Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Rasool Hafezi"'
Autor:
Rasool Hafezi
Publikováno v:
Journal of Homotopy and Related Structures. 16:487-516
Let R be a right noetherian ring. We introduce the concept of relative singularity category $$\Delta _{\mathcal {X} }(R)$$ of R with respect to a contravariantly finite subcategory $$\mathcal {X} $$ of $${\text {{mod{-}}}}R.$$ Along with some finiten
Publikováno v:
Journal of Algebra. 580:127-157
Let Λ be an Artin algebra. In this paper, the notion of n Z -Gorenstein cluster tilting subcategories will be introduced. It is shown that every n Z -cluster tilting subcategory of mod-Λ is n Z -Gorenstein if and only if Λ is an Iwanaga-Gorenstein
Publikováno v:
Communications in Algebra. 49:4028-4037
Let Λ be an artin algebra and X be a quasi-resolving subcategory of mod-Λ which is of finite type. Let SX(Λ) be the full subcategory of the morphism category H(Λ) consisting of all monomorphisms f:...
Autor:
Rasool Hafezi
Publikováno v:
Forum Mathematicum. 33:245-270
In this paper we show that how the representation theory of subcategories (of the category of modules over an Artin algebra) can be connected to the representation theory of all modules over some algebra. The subcategories dealing with are some certa
Autor:
Javad Asadollahi, Rasool Hafezi
Publikováno v:
Proceedings of the American Mathematical Society
Relative Auslander algebras were introduced and studied by Beligiannis. In this paper, we apply intermediate extension functors associated to certain recollements of functor categories to study them. In particular, we study the existence of tilting-c
Publikováno v:
Michigan Mathematical Journal.
Publikováno v:
Science China Mathematics. 63:2005-2016
Using a relative version of Auslander’s formula, we give a functorial approach to show that the bounded derived category of every Artin algebra admits a categorical resolution. This, in particular, implies that the bounded derived categories of Art
Publikováno v:
Journal of the Mathematical Society of Japan
A relative version of Auslander's formula with respect to a contravariantly finite subcategory will be given. Dual version will be treated. Several examples and applications will be provided. In particular, we show that under certain circumstances, i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c3effb4c3da8249e305ae248fd540c48
https://hdl.handle.net/21.11116/0000-0008-F4C0-B21.11116/0000-0008-F4C1-A21.11116/0000-0008-F4BE-F
https://hdl.handle.net/21.11116/0000-0008-F4C0-B21.11116/0000-0008-F4C1-A21.11116/0000-0008-F4BE-F
Let $\mathcal{M}$ be an $n$-cluster tilting subcategory of ${\rm mod}\mbox{-}\Lambda$, where $\Lambda$ is an artin algebra. Let $\mathcal{S}(\mathcal{M})$ denotes the full subcategory of $\mathcal{S}(\Lambda)$, the submodule category of $\Lambda$, co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::297bdb55f772677e4adcc4f87edd060c
http://arxiv.org/abs/2008.04178
http://arxiv.org/abs/2008.04178
Publikováno v:
J. Commut. Algebra 12, no. 1 (2020), 1-26
The main theme of this paper is to study different “Gorenstein defect categories” and their connections. This is done by studying rings for which 𝕂 a c ( Prj- R ) = 𝕂 t a c ( Prj- R ) , that is, rings enjoying the property that every acycli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abd1f71b3cd2c47344482c1f8490efc3
https://projecteuclid.org/euclid.jca/1589335252
https://projecteuclid.org/euclid.jca/1589335252