Zobrazeno 1 - 10
of 110
pro vyhledávání: '"Rasmus Pagh"'
Publikováno v:
The Journal of Privacy and Confidentiality, Vol 12, Iss 2 (2022)
Representing a sparse histogram, or more generally a sparse vector, is a fundamental task in differential privacy. An ideal solution would use space close to information-theoretical lower bounds, have an error distribution that depends optimally on
Externí odkaz:
https://doaj.org/article/960ec368602e43f7a1bb92169f180d2e
Publikováno v:
Data Science and Engineering, Vol 5, Iss 2, Pp 168-179 (2020)
Abstract String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVM in various applications.
Externí odkaz:
https://doaj.org/article/f5e65c357c814ecfa6d6b5538afb5dae
Publikováno v:
Symposium on Simplicity in Algorithms (SOSA) ISBN: 9781611977585
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8411c662e78061f32ff9b407258af62e
https://doi.org/10.1137/1.9781611977585.ch21
https://doi.org/10.1137/1.9781611977585.ch21
Publikováno v:
Aumüller, M, Lebeda, C J & Pagh, R 2022, ' Representing Sparse Vectors with Differential Privacy, Low Error, Optimal Space, and Fast Access ', Journal of Privacy and Confidentiality, vol. 12, no. 2 . https://doi.org/10.29012/jpc.809
Representing a sparse histogram, or more generally a sparse vector, is a fundamental task in differential privacy. An ideal solution would use space close to information-theoretical lower bounds, have an error distribution that depends optimally on t
Publikováno v:
PODS
The ACM PODS Alberto O. Mendelzon Test-of-Time Award is awarded every year to a paper or a small number of papers published in the PODS proceedings ten years prior that had the most impact in terms of research, methodology, or transfer to practice ov
Publikováno v:
Larsen, K G, Pagh, R & Tetek, J 2021, CountSketches, Feature Hashing and the Median of Three . in M Meila & T Zhang (eds), Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event . Proceedings of Machine Learning Research, vol. 139, pp. 6011-6020, International Conference on Machine Learning, 18-24 July 2021, Virtual, 18/07/2021 . < http://proceedings.mlr.press/v139/larsen21a.html >
Larsen, K G, Pagh, R & Tetek, J 2021, CountSketches, Feature Hashing and the Median of Three . in M Meila & T Zhang (eds), Proceedings of the 38 th International Conference on Machine Learning . PMLR, Proceedings of Machine Learning Research, vol. 139, pp. 6011-6020, 38th International Conference on Machine Learning (ICML), Virtual, 18/07/2021 . < https://proceedings.mlr.press/v139/ >
University of Copenhagen
Larsen, K G, Pagh, R & Tetek, J 2021, CountSketches, Feature Hashing and the Median of Three . in M Meila & T Zhang (eds), Proceedings of the 38 th International Conference on Machine Learning . PMLR, Proceedings of Machine Learning Research, vol. 139, pp. 6011-6020, 38th International Conference on Machine Learning (ICML), Virtual, 18/07/2021 . < https://proceedings.mlr.press/v139/ >
University of Copenhagen
In this paper, we revisit the classic CountSketch method, which is a sparse, random projection that transforms a (high-dimensional) Euclidean vector $v$ to a vector of dimension $(2t-1) s$, where $t, s > 0$ are integer parameters. It is known that ev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f28cf13f4e4642f3e34b22680076b0d1
https://pure.au.dk/portal/da/publications/countsketches-feature-hashing-and-the-median-of-three(993c82ad-30f6-470a-bea1-75885c3ca97b).html
https://pure.au.dk/portal/da/publications/countsketches-feature-hashing-and-the-median-of-three(993c82ad-30f6-470a-bea1-75885c3ca97b).html
Publikováno v:
Aumüller, M, Har-Peled, S, Mahabadi, S, Pagh, R & Silvestri, F 2021, ' Fair near neighbor search via sampling ', S I G M O D Record, vol. 50, no. 01 . https://doi.org/10.1145/3471485.3471496
Aumuller, M, Har-Peled, S, Mahabadi, S, Pagh, R & Silvestri, F 2021, ' Fair near neighbor search via sampling ', SIGMOD Record, vol. 50, no. 1, pp. 42-49 . https://doi.org/10.1145/3471485.3471496
Aumuller, M, Har-Peled, S, Mahabadi, S, Pagh, R & Silvestri, F 2021, ' Fair near neighbor search via sampling ', SIGMOD Record, vol. 50, no. 1, pp. 42-49 . https://doi.org/10.1145/3471485.3471496
Similarity search is a fundamental algorithmic primitive, widely used in many computer science disciplines. Given a set of points S and a radius parameter r > 0, the rnear neighbor (r-NN) problem asks for a data structure that, given any query point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bed2680d335dd283428fc80677a29ece
https://pure.itu.dk/ws/files/86407904/SIGMOD_research_highlight.pdf
https://pure.itu.dk/ws/files/86407904/SIGMOD_research_highlight.pdf
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030778828
EUROCRYPT (3)
EUROCRYPT (3)
It is well-known that general secure multi-party computation can in principle be applied to implement differentially private mechanisms over distributed data with utility matching the curator (a.k.a. central) model. In this paper we study the power o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8cb5abcaf87a806ddbdda0b0678d78d
https://doi.org/10.1007/978-3-030-77883-5_16
https://doi.org/10.1007/978-3-030-77883-5_16
Autor:
Lie He, Sebastian U. Stich, Mariana Raykova, Phillip B. Gibbons, Mehryar Mohri, David Evans, Badih Ghazi, Felix X. Yu, Sen Zhao, Jianyu Wang, Zheng Xu, Weikang Song, Prateek Mittal, Ramesh Raskar, Zachary Garrett, Farinaz Koushanfar, H. Brendan McMahan, Ayfer Ozgur, Mikhail Khodak, Rafael G. L. D'Oliveira, Jakub Konecní, Aurélien Bellet, Arjun Nitin Bhagoji, Hubert Eichner, Han Yu, Adrià Gascón, Ananda Theertha Suresh, Sanmi Koyejo, Praneeth Vepakomma, Josh Gardner, Chaoyang He, Florian Tramèr, Tancrède Lepoint, Salim El Rouayheb, Peter Kairouz, Li Xiong, Kallista Bonawitz, Rasmus Pagh, Tara Javidi, Mehdi Bennis, Dawn Song, Martin Jaggi, Zhouyuan Huo, Hang Qi, Gauri Joshi, Qiang Yang, Richard Nock, Yang Liu, Brendan Avent, Justin Hsu, Rachel Cummings, Graham Cormode, Marco Gruteser, Aleksandra Korolova, Ziteng Sun, Zaid Harchaoui, Ben Hutchinson, Zachary Charles, Daniel Ramage
Publikováno v:
Foundations and Trends in Machine Learning
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b1ccc10027ba1ce68ce0210510e8bdc
https://inria.hal.science/hal-02406503v2/document
https://inria.hal.science/hal-02406503v2/document
Publikováno v:
Aumüller, M, Har-Peled, S, Mahabadi, S, Pagh, R & Silvestri, F 2022, ' Sampling a Near Neighbor in High Dimensions-Who is the Fairest of Them All? ', ACM Transactions on Database Systems, vol. 47, no. 1, 4, pp. 1-40 . https://doi.org/10.1145/3502867
Aumüller, M, Pagh, R, Silvestri, F, Har-Peled, S & Mahabadi, S 2022, ' Sampling a Near Neighbor in High Dimensions — Who is the Fairest of Them All? ', ACM Transactions on Database Systems, vol. 47, no. 1, 4, pp. 1-40 . < https://dl.acm.org/doi/10.1145/3502867 >
Aumüller, M, Pagh, R, Silvestri, F, Har-Peled, S & Mahabadi, S 2022, ' Sampling a Near Neighbor in High Dimensions — Who is the Fairest of Them All? ', ACM Transactions on Database Systems, vol. 47, no. 1, 4, pp. 1-40 . < https://dl.acm.org/doi/10.1145/3502867 >
Similarity search is a fundamental algorithmic primitive, widely used in many computer science disciplines. Given a set of points $S$ and a radius parameter $r>0$, the $r$-near neighbor ($r$-NN) problem asks for a data structure that, given any query
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d944be8c42abfa2800f31a557187342