Zobrazeno 1 - 10
of 965
pro vyhledávání: '"Rasal P"'
Autor:
Rasal, Sumedh
In recent years, large language models have demonstrated remarkable capabilities in natural language understanding and generation. However, these models often struggle with hallucinations and maintaining long term contextual relevance, particularly w
Externí odkaz:
http://arxiv.org/abs/2410.10039
Autor:
Rasal, Sumedh, Hauer, E. J.
The rapid evolution of Large Language Models (LLMs) has markedly expanded their application across diverse domains, transforming how complex problems are approached and solved. Initially conceived to predict subsequent words in texts, these models ha
Externí odkaz:
http://arxiv.org/abs/2407.06486
Publikováno v:
Círculo de Lingüística Aplicada a la Comunicación, Vol 82 (2020)
Externí odkaz:
https://doaj.org/article/39abd3f9083048ac98fc957060c71ae8
Autor:
Rasal, Sumedh
Recent advancements in artificial intelligence have propelled the capabilities of Large Language Models, yet their ability to mimic nuanced human reasoning remains limited. This paper introduces a novel conceptual enhancement to LLMs, termed the Arti
Externí odkaz:
http://arxiv.org/abs/2404.14222
Autor:
Rasal, Sumedh, Hauer, E. J.
Large Language Models (LLMs) have demonstrated remarkable capabilities in solving various tasks, yet they often struggle with comprehensively addressing complex and vague problems. Existing approaches, including multi-agent LLM systems, offer solutio
Externí odkaz:
http://arxiv.org/abs/2402.16713
Autor:
Rasal, Sumedh
Large Language Models (LLMs) have revolutionized Natural Language Processing but exhibit limitations, particularly in autonomously addressing novel challenges such as reasoning and problem-solving. Traditional techniques like chain-of-thought prompti
Externí odkaz:
http://arxiv.org/abs/2401.01312
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rasal, Sumedh, Boddhu, Sanjay Kumar
This paper introduces an innovative approach to road network generation through the utilization of a multi-modal Large Language Model (LLM). Our model is specifically designed to process aerial images of road layouts and produce detailed, navigable r
Externí odkaz:
http://arxiv.org/abs/2310.09755