Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Rapcak, Miroslav"'
Autor:
Butson, Dylan, Rapcak, Miroslav
For $Y\to X$ a toric Calabi-Yau threefold resolution and $M\in \DD^b\Coh(Y)^T$ satisfying some hypotheses, we define a stack $\mf M(Y,M)$ parameterizing \emph{perverse coherent extensions} of $M$, iterated extensions of $M$ and the compactly supporte
Externí odkaz:
http://arxiv.org/abs/2309.16582
We study the algebraic structures which govern the deformation of supersymmetric intersections of M2 and M5 branes. The universal algebras on M2 and M5 branes are deformed double current algebra of $\mathfrak{gl}_K$ and $\mathfrak{gl}_K$-extended $\m
Externí odkaz:
http://arxiv.org/abs/2309.16929
There is a generalization of Heegaard-Floer theory from ${\mathfrak{gl}}_{1|1}$ to other Lie (super)algebras $^L{\mathfrak{g}}$. The corresponding category of A-branes is solvable explicitly and categorifies quantum $U_q(^L{\mathfrak{g}})$ link invar
Externí odkaz:
http://arxiv.org/abs/2305.13480
Autor:
Rapcak, Miroslav
These lecture notes cover a brief introduction into some of the algebro-geometric techniques used in the construction of BPS algebras. The first section introduces the derived category of coherent sheaves as a useful model of branes in toric Calabi-Y
Externí odkaz:
http://arxiv.org/abs/2112.13878
Autor:
Gaiotto, Davide, Rapcak, Miroslav
We determine the mathematical structures which govern the $\Omega$ deformation of supersymmetric intersections of M2 and M5 branes. We find that the supersymmetric intersections govern many aspects of the theory of W-algebras, including degenerate mo
Externí odkaz:
http://arxiv.org/abs/2012.04118
Publikováno v:
JHEP 01 (2021) 120
Unlike conformal boundary conditions, conformal defects of Virasoro minimal models lack classification. Alternatively to the defect perturbation theory and the truncated conformal space approach, we employ open string field theory (OSFT) techniques t
Externí odkaz:
http://arxiv.org/abs/2009.06567
We study the Drinfeld double of the (equivariant spherical) Cohomological Hall algebra in the sense of Kontsevich and Soibelman, associated to a smooth toric Calabi-Yau 3-fold $X$. By general reasons, the COHA acts on the cohomology of the moduli spa
Externí odkaz:
http://arxiv.org/abs/2007.13365
Autor:
Rapcak, Miroslav
Publikováno v:
JHEP01(2020)042
We discuss a class of vertex operator algebras $\mathcal{W}_{m|n\times \infty}$ generated by a super-matrix of fields for each integral spin $1,2,3,\dots$. The algebras admit a large family of truncations that are in correspondence with holomorphic f
Externí odkaz:
http://arxiv.org/abs/1910.00031
Publikováno v:
Commun. Math. Phys. (2019)
We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of $\mathfrak{gl}(1)$. Ba
Externí odkaz:
http://arxiv.org/abs/1810.10402
Autor:
Procházka, Tomáš, Rapčák, Miroslav
We study the structure of modules of corner vertex operator algebras arrising at junctions of interfaces in $\mathcal{N}=4$ SYM. In most of the paper, we concentrate on truncations of $\mathcal{W}_{1+\infty}$ associated to the simplest trivalent junc
Externí odkaz:
http://arxiv.org/abs/1808.08837