Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Raouf Doss"'
Autor:
Jónsson, Bjarni
Publikováno v:
The Journal of Symbolic Logic, 1946 Sep 01. 11(3), 85-86.
Externí odkaz:
https://www.jstor.org/stable/2266747
Publikováno v:
Journal of Computational and Graphical Statistics. 31:813-823
Autor:
Raouf Doss
Publikováno v:
Proceedings of the American Mathematical Society. 108:893-897
Titchmarsh’s convolution theorem states that if the functions f , g f,g vanish on ( − ∞ , 0 ) ( - \infty ,0) and if the convolution f ∗ g ( t ) = 0 f * g(t) = 0 on an interval ( 0 , T ) (0,T) , then there are two numbers α , β ≥ 0 \alpha
Autor:
Raouf Doss
Publikováno v:
Proceedings of the American Mathematical Society. 104:181-184
We give an elementary proof of the following theorem of Titchmarsh. Suppose f , g f,g are integrable on the interval ( 0 , 2 T ) \left ( {0,2T} \right ) and that the convolution f ∗ g ( t ) = ∫ 0 t f ( t − x ) g ( x ) d x = 0 f * g\left ( t \ri
Autor:
Raouf Doss
Publikováno v:
Proceedings of the American Mathematical Society. 82:599-602
A very elementary proof is given of the theorem that on a set of measure zero on T, any continuous function is equal to a continuous function of analytic type. The same elementary method proves that a measure of analytic type is absolutely continuous
Autor:
Raouf Doss
Publikováno v:
Transactions of the American Mathematical Society. 233:197-203
Let R n {R^n} be the n-dimensional Euclidean space. We prove that there are 4n real functions φ q {\varphi _q} continuous on R n {R^n} with the following property: Every real function f, not necessarily bounded, continuous on R n {R^n} , can be writ
Autor:
Raouf Doss
Publikováno v:
Mathematische Zeitschrift. 97:77-84
Autor:
Raouf Doss
Publikováno v:
Journal of the London Mathematical Society. :41-47
Autor:
Raouf Doss
Publikováno v:
Transactions of the American Mathematical Society. 153:211-221
G G is a locally compact abelian group with dual Γ \Gamma . If p ( γ ) = ∑ 1 N a n ( x n , γ ) p(\gamma ) = \sum \nolimits _1^N {{a_n}({x_n},\gamma )} is a trigonometric polynomial, its capacity, by definition is Σ | a n | \Sigma |{a_n}| . The
Autor:
Raouf Doss
Publikováno v:
Colloquium Mathematicum. 10:249-259