Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Rao, Tejas R."'
Autor:
Rao, Tejas R.
We add one condition to the theorem of Proth to extend its applicability to $N=k2^n+1$ where $2^n>N^{1/3}$ as opposed to the former constraint of $2^n>k$. This additional condition adds barely any complexity or time to the test and can furthermore be
Externí odkaz:
http://arxiv.org/abs/1812.11965
Autor:
Rao, Tejas R.
We develop a simple $O((\log n)^2)$ test as an extension of Proth's test for the primality for $p2^n+1$, $p>2^n$. This allows for the determination of large, non-Sierpinski primes $p$ and the smallest $n$ such that $p2^n+1$ is prime. If $p$ is a non-
Externí odkaz:
http://arxiv.org/abs/1811.06070
Autor:
Rao, Tejas R.
We develop an efficient software package to test for the primality of p2^n+1, p prime and p>2^n. This aids in the determination of large, non-Sierpinski numbers p, for prime p, and in cryptography. It furthermore uniquely allows for the computation o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d95ae3f15b7caf8679761740f72b08e
https://doi.org/10.7287/peerj.preprints.27396v1
https://doi.org/10.7287/peerj.preprints.27396v1