Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Rankeya Datta"'
Autor:
Rankeya Datta, Kevin Tucker
Publikováno v:
Journal of Algebra. 629:307-357
A splinter is a notion of singularity that has seen numerous recent applications, especially in connection with the direct summand theorem, the mixed characteristic minimal model program, Cohen-Macaulayness of absolute integral closures and cohomolog
Autor:
Rankeya Datta
Publikováno v:
Mathematische Nachrichten. 296:1041-1055
Given a generically finite local extension of valuation rings $V \subset W$, the question of whether $W$ is the localization of a finitely generated $V$-algebra is significant for approaches to the problem of local uniformization of valuations using
Autor:
Rankeya Datta, Austyn Simpson
Publikováno v:
Journal of Algebra. 595:479-522
Let k be an algebraically closed field of characteristic p > 0 . We show that if X ⊆ P k n is an equidimensional subscheme with Hilbert–Kunz multiplicity less than λ at all points x ∈ X , then for a general hyperplane H ⊆ P k n , the Hilbert
Autor:
Rankeya Datta, Benjamin Antieau
We give three proofs that valuation rings are derived splinters: a geometric proof using the absolute integral closure, a homological proof which reduces the problem to checking that valuation rings are splinters (which is done in the second author's
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1c3025b4310515901e10158ed6bd7ab
http://arxiv.org/abs/2002.01067
http://arxiv.org/abs/2002.01067
Autor:
Rankeya Datta, Kevin Tucker
We show that Noetherian splinters ascend under essentially \'etale homomorphisms. Along the way, we also prove that the henselization of a Noetherian local splinter is always a splinter and that the completion of a local splinter with geometrically r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d3b3c0b7b300b2c701e8940265199c1
Autor:
Rankeya Datta
Using the theory of asymptotic test ideals, we prove the prime characteristic analogue of a characteristic $0$ result of Ein, Lazarsfeld and Smith (arXiv:math/0202303) on uniform approximation of valuation ideals associated to real-valued Abhyankar v
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::397945a9b521c65669beecd92a9fe144
http://arxiv.org/abs/1705.00447
http://arxiv.org/abs/1705.00447
Autor:
Rankeya Datta, Karen E. Smith
Publikováno v:
Algebra Number Theory 11, no. 4 (2017), 1003-1007
Theorem 5.1 is corrected in the paper Frobenius and valuation rings.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::075ef162640ca306ebc7d115f8a631e4
https://projecteuclid.org/euclid.ant/1510842785
https://projecteuclid.org/euclid.ant/1510842785
Autor:
Rankeya Datta
Using a local monomialization result of Knaf and Kuhlmann, we prove that the valuation ring of an Abhyankar valuation of a function field over a perfect ground field of prime characteristic is Frobenius split. We show that a Frobenius splitting of a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::961b6b3594bc45be615ca4d68117cff0
Autor:
Rankeya Datta
We examine local cohomology in the setting of valuation rings. The novelty of this investigation stems from the fact that valuation rings are usually non-Noetherian, whereas local cohomology has been extensively developed mostly in a Noetherian setti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20a84dcf5b045dd202a853bc91f654cb
http://arxiv.org/abs/1601.01954
http://arxiv.org/abs/1601.01954
Autor:
Karen E. Smith, Rankeya Datta
Publikováno v:
Algebra Number Theory 10, no. 5 (2016), 1057-1090
The behavior of the Frobenius map is investigated for valuation rings of prime characteristic. We show that valuation rings are always F-pure. We introduce a generalization of the notion of strong F-regularity, which we call F-pure regularity, and sh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bd2a1da3ba3ea32c1f437ea4bdcbb22
https://projecteuclid.org/euclid.ant/1510842535
https://projecteuclid.org/euclid.ant/1510842535