Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Ranked poset"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sam Hopkins, Colin Defant
For a Weyl group $W$ of rank $r$, the $W$-Catalan number is the number of antichains of the poset of positive roots, and the $W$-Narayana numbers refine the $W$-Catalan number by keeping track of the cardinalities of these antichains. The $W$-Narayan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50698540eb8dfab592c2fb11a457e34f
http://arxiv.org/abs/2101.02329
http://arxiv.org/abs/2101.02329
Autor:
Toshiaki Maeno, Yasuhide Numata
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AR,..., Iss Proceedings (2012)
We introduce a certain class of algebras associated to matroids. We prove the Lefschetz property of the algebras for some special cases. Our result implies the Sperner property for the Boolean lattice and the vector space lattice.
Externí odkaz:
https://doaj.org/article/640e91106e7145c59c5e09572d5bb86e
Autor:
Tyler Kloefkorn
Publikováno v:
Journal of Algebra. 487:138-160
To a finite ranked poset Γ we associate a finite-dimensional graded quadratic algebra R Γ . Assuming Γ satisfies a combinatorial condition known as uniform, R Γ is related to a well-known algebra, the splitting algebra A Γ . First introduced by
Motivation coming from the study of affine Weyl groups, a structure of ranked poset is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe52bc9bb9b89f56e14cf351984e92ad
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Mathematics. 371:107252
We introduce two new partial orders on the standard Young tableaux of a given partition shape, in analogy with the strong and weak Bruhat orders on permutations. Both posets are ranked by the major index statistic offset by a fixed shift. The existen
Autor:
Brad Shelton, Tyler Kloefkorn
Publikováno v:
Journal of Algebra. 422:660-682
We study a finite dimensional quadratic graded algebra R Γ defined from a finite ranked poset Γ. This algebra has been central to the study of the splitting algebras A Γ introduced by Gelfand, Retakh, Serconek and Wilson [4] . Those algebras are k
Autor:
Kok Bin Wong, Cheng Yeaw Ku
Publikováno v:
Discrete Mathematics. 313:2239-2246
Let N be the set of positive integers, and let P ( n ) = ⋃ 1 ≤ l ≤ n { ( x 1 , … , x l ) ∈ N l : x 1 + ⋯ + x l = n } be the set of (ordered) partitions of n . We show that there exist a rank function and orderings ≤ c and ≺ such that
Autor:
Antony Mathews, Joseph Mathews, Sandi Klavžar, Narasimha-Shenoi Prasanth, Manoj Changat, Boštjan Brešar
Publikováno v:
Ars Mathematica Contemporanea. 2:27-33
The standard poset transit function of a poset P is a function T P that assigns to a pair of comparable elements the interval between them, while T P ( x , y ) = { x , y } for a pair x , y of incomparable elements. Posets in which the standard poset