Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ranjan, Keshav"'
We consider the Hospital/Residents (HR) problem in the presence of ties in preference lists. Among the three notions of stability, viz. weak, strong, and super stability, we focus on the notion of strong stability. Strong stability has many desirable
Externí odkaz:
http://arxiv.org/abs/2411.10284
We consider the stable marriage problem in the presence of ties in preferences and critical vertices. The input to our problem is a bipartite graph G = (A U B, E) where A and B denote sets of vertices which need to be matched. Each vertex has a prefe
Externí odkaz:
http://arxiv.org/abs/2303.12325
We consider the many-to-many bipartite matching problem in the presence of two-sided preferences and two-sided lower quotas. The input to our problem is a bipartite graph G=(A U B, E), where each vertex in A U B specifies a strict preference ordering
Externí odkaz:
http://arxiv.org/abs/2206.12394
Publikováno v:
In Theoretical Computer Science 8 January 2024 982
Autor:
Paul, Subhabrata, Ranjan, Keshav
Given a graph $G = (V,E)$, a vertex $u \in V$ ve-dominates all edges incident to any vertex of $N_G[u]$. A set $S \subseteq V$ is a ve-dominating set if for all edges $e\in E$, there exists a vertex $u \in S$ such that $u$ ve-dominates $e$. Lewis [Ph
Externí odkaz:
http://arxiv.org/abs/1910.03635
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the hospital-residents problem where both hospitals and residents can have lower quotas. The input is a bipartite graph G = (���������,E), each vertex in ��������� has a strict preference ordering over
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc3f9d108c67b318f0560e54e968c48f
Autor:
Paul, Subhabrata, Ranjan, Keshav
Publikováno v:
Journal of Combinatorial Optimization; Aug2022, Vol. 44 Issue 1, p303-330, 28p