Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Rangipour, B."'
We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes-Moscovici Hopf algebra $\mathcal{H}_n$. More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of $\mathcal{H}_n$, and we show that
Externí odkaz:
http://arxiv.org/abs/1705.07651
Autor:
Rangipour, B., Sutlu, S.
In this paper a general van Est type isomorphism is established. The isomorphism is between the Lie algebra cohomology of a bicrossed sum Lie algebra and the Hopf cyclic cohomology of its Hopf algebra. We first prove a one to one correspondence betwe
Externí odkaz:
http://arxiv.org/abs/1108.6101
Autor:
Rangipour, B., Sutlu, S.
In this paper we aim to understand the category of stable-Yetter-Drinfeld modules over enveloping algebra of Lie algebras. To do so, we need to define such modules over Lie algebras. These two categories are shown to be isomorphic. A mixed complex is
Externí odkaz:
http://arxiv.org/abs/1108.2806
Autor:
Hassanzadeh, M., Rangipour, B.
A new quantization of groupoids under the name of \times-Hopf coalgebras is introduced. We develop a Hopf cyclic theory with coefficients in stable-anti-Yetter-Drinfeld modules for \times-Hopf coalgebras. We use \times-Hopf coalgebras to study coexte
Externí odkaz:
http://arxiv.org/abs/1108.0030
Autor:
Hassanzadeh, M., Rangipour, B.
We define the notion of equivariant Hopf Galois extension and apply it as a functor between category of SAYD modules of the Hopf algebras involving in the extension. This generalizes the result of Jara-Stefan and B\"ohm-Stefan on associating a SAYD m
Externí odkaz:
http://arxiv.org/abs/1010.5818
Autor:
Khalkhali, M., Rangipour, B.
We show that various cyclic and cocyclic modules attached to Hopf algebras and Hopf modules are related to each other via Connes' duality isomorphism for the cyclic category.
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
http://arxiv.org/abs/math/0310088
Following the idea of an invariant differential complex, we construct general-type cyclic modules that provide the common denominator of known cyclic theories. The cyclicity of these modules is governed by Hopf-algebraic structures. We prove that the
Externí odkaz:
http://arxiv.org/abs/math/0306288
Autor:
Khalkhali, M., Rangipour, B.
We consider Hopf crossed products of the the type $A#_\sigma \mathcal{H}$, where $\mathcal{H}$ is a cocommutative Hopf algebra, $A$ is an $\mathcal{H}$-module algebra and $\sigma$ is a "numerical" convolution invertible 2-cocycle on $\mathcal{H}$. we
Externí odkaz:
http://arxiv.org/abs/math/0303068
Autor:
Khalkhali, M., Rangipour, B.
We review recent progress in the study of cyclic cohomology of Hopf algebras, Hopf algebroids, and invariant cyclic homology starting with the pioneering work of Connes-Moscovici.
Comment: To be published by Banach Centre Publications
Comment: To be published by Banach Centre Publications
Externí odkaz:
http://arxiv.org/abs/math/0303069
Autor:
Khalkhali, M., Rangipour, B.
We define a noncommutative analogue of invariant de Rham cohomology. More precisely, for a triple $(A,\mathcal{H},M)$ consisting of a Hopf algebra $\mathcal{H}$, an $\mathcal{H}$-comodule algebra $A$, an $\mathcal{H}$-module $M$, and a compatible gro
Externí odkaz:
http://arxiv.org/abs/math/0207118