Zobrazeno 1 - 10
of 3 152
pro vyhledávání: '"Random energy model"'
Autor:
Sumedha, Marsili, Matteo
We introduce a spin-1 version of the random energy model with crystal field. Crystal field controls the density of 0 spins in the system. We solve the model in the micro-canonincal ensemble. The model has a spin-glass transition at a finite temperatu
Externí odkaz:
http://arxiv.org/abs/2410.13444
Precise asymptotics have revealed many surprises in high-dimensional regression. These advances, however, have not extended to perhaps the simplest estimator: direct Nadaraya-Watson (NW) kernel smoothing. Here, we describe how one can use ideas from
Externí odkaz:
http://arxiv.org/abs/2408.03769
Autor:
Lee, Holden, Wu, Qiang
The continuous random energy model (CREM) is a toy model of spin glasses on $\{0,1\}^N$ that, in the limit, exhibits an infinitely hierarchical correlation structure. We give two polynomial-time algorithms to approximately sample from the Gibbs distr
Externí odkaz:
http://arxiv.org/abs/2407.00868
In comparison with Derrida's REM, we investigate the influence of the so-called decoration processes arising in the limiting extremal processes of numerous log-correlated Gaussian fields. In particular, we focus on the branching Brownian motion and t
Externí odkaz:
http://arxiv.org/abs/2404.02888
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ho, Fu-Hsuan
The continuous random energy model (CREM) is a toy model of disordered systems introduced by Bovier and Kurkova in 2004 based on previous work by Derrida and Spohn in the 80s. In a recent paper by Addario-Berry and Maillard, they raised the following
Externí odkaz:
http://arxiv.org/abs/2308.00857
We identify the fluctuations of the partition function of the continuous random energy model on a Galton-Watson tree in the so-called weak correlation regime. Namely, when the ``speed functions'', that describe the time-inhomogeneous variance, lie st
Externí odkaz:
http://arxiv.org/abs/2304.03574
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of $N$ non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurat
Externí odkaz:
http://arxiv.org/abs/2205.07487
Autor:
Derrida, Bernard, Mottishaw, Peter
We solve the random energy model when the energies of the configurations take only integer values. In the thermodynamic limit, the average overlaps remain size dependent and oscillate as the system size increases. While the extensive part of the free
Externí odkaz:
http://arxiv.org/abs/2202.12584