Zobrazeno 1 - 10
of 97
pro vyhledávání: '"Randal Burns"'
Autor:
Joshua T. Vogelstein, Eric W. Bridgeford, Minh Tang, Da Zheng, Christopher Douville, Randal Burns, Mauro Maggioni
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
Biomedical measurements usually generate high-dimensional data where individual samples are classified in several categories. Vogelstein et al. propose a supervised dimensionality reduction method which estimates the low-dimensional data projection f
Externí odkaz:
https://doaj.org/article/4e96486444d04876a7a760151e1835c7
Publikováno v:
2023 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) ISBN: 9781611977561
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::24e0c5b4ace010fbf4d9fcc6715ca00c
https://doi.org/10.1137/1.9781611977561.ch13
https://doi.org/10.1137/1.9781611977561.ch13
Autor:
Justus M. Kebschull, Adam S. Charles, Talmo D. Pereira, William Silversmith, Daniel J. Tward, Joshua T. Vogelstein, Benjamin D. Pedigo, Jaewon Chung, Benjamin Falk, Satrajit S. Ghosh, Nicholas L. Turner, Randal Burns
Publikováno v:
Annu Rev Neurosci
As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerte
Autor:
Brian Wheatman, Randal Burns
Publikováno v:
2021 IEEE International Conference on Big Data (Big Data).
Autor:
Joshua T. Vogelstein, V.D. Calhoun, Carey E. Priebe, Michael P. Milham, A Loftus, Rex E. Jung, Sephira G. Ryman, Richard C. Craddock, William Gray Roncal, Brian Caffo, Ross Lawrence, Daniel S. Margulies, Disa Mhembere, Vikram Chandrashekhar, Eric W. Bridgeford, Zuo X-N., Gregory Kiar, Randal Burns
Connectomics—the study of brain networks—provides a unique and valuable opportunity to study the brain. However, research in human connectomics, accomplished via Magnetic Resonance Imaging (MRI), is a resource-intensive practice: typical analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9e79dccecf66ff0aeee1c9fbd70a6c3a
https://doi.org/10.1101/2021.11.01.466686
https://doi.org/10.1101/2021.11.01.466686
Publikováno v:
KDD
We present methods to serialize and deserialize gradient-boosted trees and random forests that optimize inference latency when models are not loaded into memory. This arises when models are larger than memory, but also systematically when models are
Publikováno v:
EuroSys
The advent of Persistent Memory (PM) devices enables systems to actively persist information at low costs, including program state traditionally in volatile memory. However, this trend poses a reliability challenge in which multiple classes of soft f
Autor:
Joshua T. Vogelstein, Carey E. Priebe, Meghana Madhyastha, J.D. Browne, Veronika Strnadová-Neeley, Gongkai Li, Randal Burns
Publikováno v:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Together with the curse of dimensionality, nonlinear dependencies in large data sets persist as major challenges in data mining tasks. A reliable way to accurately preserve nonlinear structure is to compute geodesic distances between data points. Man
Autor:
Randal Burns
Publikováno v:
eLearn. 2020
After a decade of struggle to help students install and launch machine virtual machines in the cloud, the author migrated his computer science course to the Gigantum data science platform, which automates the delivery of complex software configuratio
Autor:
George S. Plummer, Isaac H. Bianco, Andrew Champion, Arthur W. Wetzel, David G. C. Hildebrand, Joshua T. Vogelstein, Marcelo Cicconet, Russel Torres, Alexander F. Schier, Owen Randlett, Randal Burns, Jeff W. Lichtman, Wei-Chung Allen Lee, Won-Ki Jeong, Stephan Saalfeld, Alexander D. Baden, Jungmin Moon, Florian Engert, Tran Minh Quan, Ruben Portugues, Woohyuk Choi, Kunal Lillaney, Brett J. Graham
Publikováno v:
Nature. 545:345-349
Investigating the dense meshwork of wires and synapses that form neuronal circuits is possible with the high resolution of serial-section electron microscopy (ssEM)1. However, the imaging scale required to comprehensively reconstruct axons and dendri