Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Ran, Zhenlin"'
We obtain explicit upper and lower bounds on the size of the coefficients of the Drinfeld modular polynomials $\Phi_N$ for any monic $N\in\mathbb{F}_q[t]$. These polynomials vanish at pairs of $j$-invariants of Drinfeld $\mathbb{F}_q[t]$-modules of r
Externí odkaz:
http://arxiv.org/abs/2410.11132
Autor:
Ran, Zhenlin
Let $q$ be an odd number and $q>5$, and $\mathbb{F}_q$ be a finite field of $q$ elements. We prove that at most finitely many singular moduli of rank 2 $\mathbb{F}_q[t]$-Drinfeld modules are algebraic units. In particular, we develop some techniques
Externí odkaz:
http://arxiv.org/abs/2303.04324