Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Ran, Yingli"'
We study the question of whether a sequence d = (d_1,d_2, \ldots, d_n) of positive integers is the degree sequence of some outerplanar (a.k.a. 1-page book embeddable) graph G. If so, G is an outerplanar realization of d and d is an outerplanaric sequ
Externí odkaz:
http://arxiv.org/abs/2405.03278
Consider a graph with nonnegative node weight. A vertex subset is called a CDS (connected dominating set) if every other node has at least one neighbor in the subset and the subset induces a connected subgraph. Furthermore, if every other node has at
Externí odkaz:
http://arxiv.org/abs/2301.09247
Autor:
Ran, Yingli, Zhang, Zhao
In a minimum $p$ union problem (Min$p$U), given a hypergraph $G=(V,E)$ and an integer $p$, the goal is to find a set of $p$ hyperedges $E'\subseteq E$ such that the number of vertices covered by $E'$ (that is $|\bigcup_{e\in E'}e|$) is minimized. It
Externí odkaz:
http://arxiv.org/abs/2208.14264
This paper studies the minimum weight set cover (MinWSC) problem with a {\em small neighborhood cover} (SNC) property proposed by Agarwal {\it et al.} in \cite{Agarwal.}. A parallel algorithm for MinWSC with $\tau$-SNC property is presented, obtainin
Externí odkaz:
http://arxiv.org/abs/2202.03872
A connected dominating set is a widely adopted model for the virtual backbone of a wireless sensor network. In this paper, we design an evolutionary algorithm for the minimum connected dominating set problem (MinCDS), whose performance is theoretical
Externí odkaz:
http://arxiv.org/abs/2201.05332
In the minimum cost submodular cover problem (MinSMC), we are given a monotone nondecreasing submodular function $f\colon 2^V \rightarrow \mathbb{Z}^+$, a linear cost function $c: V\rightarrow \mathbb R^{+}$, and an integer $k\leq f(V)$, the goal is
Externí odkaz:
http://arxiv.org/abs/2108.04416
Publikováno v:
In Journal of Computer and System Sciences March 2025 148
Publikováno v:
Journal of Global Optimization, 2019
Partial set cover problem and set multi-cover problem are two generalizations of set cover problem. In this paper, we consider the partial set multi-cover problem which is a combination of them: given an element set $E$, a collection of sets $\mathca
Externí odkaz:
http://arxiv.org/abs/1811.08185
Publikováno v:
In Theoretical Computer Science 6 October 2022 932:13-20
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.