Zobrazeno 1 - 10
of 531
pro vyhledávání: '"Ramakrishna R. Nemani"'
Autor:
Taejin Park, Murali K. Gumma, Weile Wang, Pranay Panjala, Sunil K. Dubey, Ramakrishna R. Nemani
Publikováno v:
Communications Earth & Environment, Vol 5, Iss 1, Pp 1-2 (2024)
Externí odkaz:
https://doaj.org/article/94ce259fccbc416481e38b30ea309298
Autor:
Taejin Park, Murali K. Gumma, Weile Wang, Pranay Panjala, Sunil K. Dubey, Ramakrishna R. Nemani
Publikováno v:
Communications Earth & Environment, Vol 4, Iss 1, Pp 1-11 (2023)
Abstract Satellite data show the Earth has been greening and identify croplands in India as one of the most prominent greening hotspots. Though India’s agriculture has been dependent on irrigation enhancement to reduce crop water stress and increas
Externí odkaz:
https://doaj.org/article/50666e6a86f247da926239888f1e0553
Autor:
Taejin Park, Hirofumi Hashimoto, Weile Wang, Bridget Thrasher, Andrew R. Michaelis, Tsengdar Lee, Ian G. Brosnan, Ramakrishna R. Nemani
Publikováno v:
Earth's Future, Vol 11, Iss 5, Pp n/a-n/a (2023)
Abstract Constraining an increase in global mean temperature below 2°C compared to pre‐industrial levels is critical to limiting dangerous and cascading impacts of anthropogenic climate change. Understanding future climatic changes and their spati
Externí odkaz:
https://doaj.org/article/1b926828e1f94f2d958dabceb695d18d
Publikováno v:
IEEE Access, Vol 10, Pp 89221-89231 (2022)
Climate change is making heat waves more frequent, long-lasting, and severe. While multiple satellite types provide data to monitor surface temperature, geostationary (GEO) sensors provide near-continuous, continental-scale observations which can bet
Externí odkaz:
https://doaj.org/article/385fc293b1064929be2ef3dcedae9d01
Autor:
Yepei Chen, Kaimin Sun, Wenzhuo Li, Chi Chen, Pengfei Li, Ting Bai, Taejin Park, Weile Wang, Ramakrishna R. Nemani, Ranga B. Myneni
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 6937-6950 (2021)
The latest Geostationary (GEO) Operational Environmental Satellite-16 (GOES-16) equipped with Advanced Baseline Imager (ABI) has comparable spectral and spatial resolution as low earth orbiting (LEO) sensors [i.e., the Moderate Resolution Imaging Spe
Externí odkaz:
https://doaj.org/article/23304973e3874e61bb97aadb603f2032
Autor:
Hirofumi Hashimoto, Weile Wang, Jennifer L. Dungan, Shuang Li, Andrew R. Michaelis, Hideaki Takenaka, Atsushi Higuchi, Ranga B. Myneni, Ramakrishna R. Nemani
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
Cloud cover and scarcity of ground-based validation hinder remote sensing of forest dynamics in the Amazon basin. Here, the authors analyse imagery from a high-frequency geostationary satellite sensor to study monthly NDVI patterns in the Amazon fore
Externí odkaz:
https://doaj.org/article/23a00371dcb94f4197d5aecbbb118679
Autor:
Weile Wang, Daniel McDuff, Thomas Vandal, Andrew Michaelis, Kate Duffy, Ramakrishna R. Nemani
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 60:1-11
Earth-observing satellites carrying multispectral sensors are widely used to monitor the physical and biological states of the atmosphere, land, and oceans. These satellites have different vantage points above the Earth and different spectral imaging
Autor:
Daniel M. Griffith, Kristin B. Byrd, Niky Taylor, Elijah Allan, Liz Bittner, Bart O'Brien, V. Thomas Parker, Michael C. Vasey, Ryan Pavlick, Ramakrishna R. Nemani
Publikováno v:
Journal of Geophysical Research: Biogeosciences. 128
Autor:
Vesta Afzali Gorooh, Subodh Kalia, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Sangram Ganguly, Ramakrishna R. Nemani
Publikováno v:
Remote Sensing, Vol 12, Iss 2, p 316 (2020)
Satellite remote sensing plays a pivotal role in characterizing hydrometeorological components including cloud types and their associated precipitation. The Cloud Profiling Radar (CPR) on the Polar Orbiting CloudSat satellite has provided a unique da
Externí odkaz:
https://doaj.org/article/d260df92e4634af592a4b879a586e514
Autor:
Edward Boyda, Saikat Basu, Sangram Ganguly, Andrew Michaelis, Supratik Mukhopadhyay, Ramakrishna R Nemani
Publikováno v:
PLoS ONE, Vol 12, Iss 2, p e0172505 (2017)
Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover
Externí odkaz:
https://doaj.org/article/fa23cdbe1f0a4a8da38e361a96be169b