Zobrazeno 1 - 10
of 381
pro vyhledávání: '"Ramón Quintanilla"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 7, Pp 16998-17024 (2024)
In this paper, a thermoelastic problem involving a viscous strain gradient beam is considered from the analytical and numerical points of view. The so-called type Ⅱ thermal law is used to model the heat conduction and two possible dissipation mecha
Externí odkaz:
https://doaj.org/article/fd870643de8e4be8a039e54ff991fdfa
Publikováno v:
Electronic Research Archive, Vol 30, Iss 12, Pp 4318-4340 (2022)
In this paper, we study, from both analytical and numerical points of view, a problem involving a mixture of two viscoelastic solids. An existence and uniqueness result is proved using the theory of linear semigroups. Exponential decay is shown for t
Externí odkaz:
https://doaj.org/article/691ce35e73fd477fb42d3db13f323c42
Publikováno v:
Electronic Research Archive, Vol 30, Iss 2, Pp 683-700 (2022)
In this work, we study, from the numerical point of view, a dynamic thermoviscoelastic problem involving micropolar materials. The model leads to a linear system composed of parabolic partial differential equations for the displacements, the microrot
Externí odkaz:
https://doaj.org/article/f8c1940ea692401ba3250e549c456705
Autor:
José R. Fernández, Ramón Quintanilla
Publikováno v:
AIMS Mathematics, Vol 6, Iss 6, Pp 5440-5451 (2021)
In this work we consider the temperature-rate dependent two temperatures thermoelastic theory. It has been proposed very recently. We study the case in which the elasticity tensor may not be positive definite. Thus, the problem can be ill posed in th
Externí odkaz:
https://doaj.org/article/b146b914842143a3a4a85ba16f73a15d
Autor:
Ramón Quintanilla
Publikováno v:
Applications in Engineering Science, Vol 9, Iss , Pp 100083- (2022)
Externí odkaz:
https://doaj.org/article/358639fd8495468bb4d2e4d867d160fc
Publikováno v:
Journal of Thermal Stresses. :1-22
Autor:
Jose R. Fernández, Ramón Quintanilla
Publikováno v:
European Journal of Applied Mathematics. :1-11
In this paper, we consider the time decay of the solutions to some problems arising in strain gradient thermoelasticity. We restrict to the two-dimensional case, and we assume that two dissipative mechanisms are introduced, the temperature and the ma
Autor:
Ramón Quintanilla
Publikováno v:
Applications in Engineering Science, Vol 1, Iss , Pp 100006- (2020)
In this note we propose the Moore-Gibson-Thompson heat conduction equation with two temperatures and prove the well posedness and the exponential decay of the solutions under suitable conditions on the constitutive parameters. Later we consider the e
Externí odkaz:
https://doaj.org/article/3bc6462276494c9ebd618e9a0b8ab51f
Autor:
Raúl Omar Martínez Zarazúa, Pedro Chávez Jiménez, Marcela Anahí Narro Martínez, Ramón Quintanilla Loredo, Rogelio Salinas Domínguez, Gerardo Enrique Muñoz Maldonado
Publikováno v:
Cirugía Cardiovascular, Vol 26, Iss 4, Pp 204-206 (2019)
Resumen: El trauma vascular abdominal es una entidad de urgencia médica de gran morbimortalidad, presentándose en casos de trauma abdominal penetrante, trauma contuso abdominal, secundaria a lesiones advertidas o inadvertidas en cirugías abdominal
Externí odkaz:
https://doaj.org/article/c897191353b44b5db12acdfa63b9ec3c
Publikováno v:
Numerical Methods for Partial Differential Equations. 39:1067-1084
In this work, we study, from the numerical point of view, a type III thermoelastic model with double porosity. The thermomechanical problem is written as a linear system composed of hyperbolic partial differential equations for the displacements and