Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Ralph Matthes"'
Publikováno v:
Electronic Proceedings in Theoretical Computer Science, Vol 164, Iss Proc. CL&C 2014, Pp 63-77 (2014)
We apply an idea originated in the theory of programming languages - monadic meta-language with a distinction between values and computations - in the design of a calculus of cut-elimination for classical logic. The cut-elimination calculus we obtain
Externí odkaz:
https://doaj.org/article/45b30b2bf62b4ab5a27987d9be7eb7a1
Publikováno v:
Electronic Proceedings in Theoretical Computer Science, Vol 126, Iss Proc. FICS 2013, Pp 28-43 (2013)
We propose to study proof search from a coinductive point of view. In this paper, we consider intuitionistic logic and a focused system based on Herbelin's LJT for the implicational fragment. We introduce a variant of lambda calculus with potentially
Externí odkaz:
https://doaj.org/article/397a4c98dcdd42d28b3daf73fcedef9c
Publikováno v:
Logical Methods in Computer Science, Vol Volume 5, Issue 2 (2009)
The intuitionistic fragment of the call-by-name version of Curien and Herbelin's \lambda\_mu\_{\~mu}-calculus is isolated and proved strongly normalising by means of an embedding into the simply-typed lambda-calculus. Our embedding is a continuation-
Externí odkaz:
https://doaj.org/article/172208528bfc40e4ad7effabedc8fcb0
Publikováno v:
CPP 2022: Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs
CPP 2022
(à paraître) Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’22)
11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2022)
11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2022), Jan 2022, Philadelphia, PA, United States. ⟨10.1145/3497775.3503678⟩
CPP 2022
(à paraître) Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’22)
11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2022)
11th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2022), Jan 2022, Philadelphia, PA, United States. ⟨10.1145/3497775.3503678⟩
Accepted to CPP 2022; International audience; In previous work (“From signatures to monads in UniMath”), we described a category-theoretic construction of abstract syntax from a signature, mechanized in the UniMath library based on the Coq proof
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fca1362af037f15d322ea13ad149b4a
http://arxiv.org/abs/2112.06984
http://arxiv.org/abs/2112.06984
Publikováno v:
Mathematics of Program Construction. MPC 2019. Lecture Notes in Computer Science
13th International Conference on Mathematics of Program Construction, MPC 2019
13th International Conference on Mathematics of Program Construction, MPC 2019, Oct 2019, Porto, Portugal. pp.45-75, ⟨10.1007/978-3-030-33636-3_3⟩
Lecture Notes in Computer Science ISBN: 9783030336356
MPC
13th International Conference on Mathematics of Program Construction, MPC 2019
13th International Conference on Mathematics of Program Construction, MPC 2019, Oct 2019, Porto, Portugal. pp.45-75, ⟨10.1007/978-3-030-33636-3_3⟩
Lecture Notes in Computer Science ISBN: 9783030336356
MPC
International audience; By using pointers, breadth-first algorithms are very easy to implement efficiently in imperative languages. Implementing them with the same bounds on execution time in purely functional style can be challenging, as explained i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::328fde6ebd6a51e65505a9080df90714
https://hal.archives-ouvertes.fr/hal-02333423/document
https://hal.archives-ouvertes.fr/hal-02333423/document
Publikováno v:
Journal of Automated Reasoning
Journal of Automated Reasoning, Springer Verlag, 2019, 63 (2), pp.285-318. ⟨10.1007/s10817-018-9474-4⟩
Journal of Automated Reasoning, 2019, 63 (2), pp.285-318. ⟨10.1007/s10817-018-9474-4⟩
Journal of Automated Reasoning, Springer Verlag, 2019, 63 (2), pp.285-318. ⟨10.1007/s10817-018-9474-4⟩
Journal of Automated Reasoning, 2019, 63 (2), pp.285-318. ⟨10.1007/s10817-018-9474-4⟩
The term UniMath refers both to a formal system for mathematics, as well as a computer-checked library of mathematics formalized in that system. The UniMath system is a core dependent type theory, augmented by the univalence axiom. The system is kept
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::220aa7e233cc7cde3e930c3bf3c004b0
https://hal.inria.fr/hal-01410487
https://hal.inria.fr/hal-01410487
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2019, 29 (8), pp.1092-1124. ⟨10.1017/S0960129518000099⟩
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2019, 29 (8), pp.1092-1124. ⟨10.1017/S0960129518000099⟩
A new approach to inhabitation problems in simply typed lambda-calculus is shown, dealing with both decision and counting problems. This approach works by exploiting a representation of the search space generated by a given inhabitation problem, whic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be0dfbaf051d6148fea0629fbb1b944f
Publikováno v:
Fundamenta Informaticae
Fundamenta Informaticae, IOS Press, 2019, 170 (1-3), pp.111-138. ⟨10.3233/FI-2019-1857⟩
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Fundamenta Informaticae, 2019, 170 (1-3), pp.111-138. ⟨10.3233/FI-2019-1857⟩
Fundamenta Informaticae, IOS Press, 2019, 170 (1-3), pp.111-138. ⟨10.3233/FI-2019-1857⟩
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Fundamenta Informaticae, 2019, 170 (1-3), pp.111-138. ⟨10.3233/FI-2019-1857⟩
If we consider as "member" of a simple type the outcome of any successful (possibly infinite) run of bottom-up proof search that starts from the type, then several concepts of "finiteness" for simple types are possible: the finiteness of the search s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87f3cefbefa14a900fc0361e6b2331d9
https://hal.archives-ouvertes.fr/hal-02119503
https://hal.archives-ouvertes.fr/hal-02119503
Publikováno v:
Annals of Pure and Applied Logic
Annals of Pure and Applied Logic, Elsevier Masson, 2021, 172 (10), ⟨10.1016/j.apal.2021.103026⟩
Annals of Pure and Applied Logic, 2021, 172 (10), ⟨10.1016/j.apal.2021.103026⟩
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Annals of Pure and Applied Logic, Elsevier Masson, 2021, 172 (10), ⟨10.1016/j.apal.2021.103026⟩
Annals of Pure and Applied Logic, 2021, 172 (10), ⟨10.1016/j.apal.2021.103026⟩
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
In reductive proof search, proofs are naturally generalized by solutions, comprising all (possibly infinite) structures generated by locally correct, bottom-up application of inference rules. We propose a rather natural extension of the Curry-Howard
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48c51021f018f6544bc396de417d7135
http://arxiv.org/abs/1602.04382
http://arxiv.org/abs/1602.04382