Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Ralph Greenberg"'
Autor:
Ralph Greenberg
Publikováno v:
Development of Iwasawa Theory — the Centennial of K. Iwasawa's Birth, M. Kurihara, K. Bannai, T. Ochiai and T. Tsuji, eds. (Tokyo: Mathematical Society of Japan, 2020)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6ca9b70c69c2715201faf005ac9fa61
https://projecteuclid.org/euclid.aspm/1610494009
https://projecteuclid.org/euclid.aspm/1610494009
Autor:
Ralph Greenberg, Ted Chinburg, Frauke M. Bleher, Mahesh Kakde, Martin J. Taylor, Romyar T. Sharifi
The Iwasawa theory of CM fields has traditionally concerned Iwasawa modules that are abelian pro-p Galois groups with ramification allowed at a maximal set of primes over p such that the module is torsion. A main conjecture for such an Iwasawa module
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e04b0c012a911f97a688983ca1a5684
Autor:
Ralph Greenberg
Publikováno v:
Annales mathématiques du Québec. 40:83-119
We describe an approach to constructing Galois extensions of \({\mathbf{Q}}\) with Galois group isomorphic to an open subgroup of \(GL_n({\mathbf{Z}}_p)\) for various values of n and primes p. The approach involves studying a certain topological gene
Autor:
Ralph Greenberg
Publikováno v:
Class Field Theory – Its Centenary and Prospect, K. Miyake, ed. (Tokyo: Mathematical Society of Japan, 2001)
Autor:
Ralph Greenberg, Vinayak Vatsal
Publikováno v:
Development of Iwasawa Theory — the Centennial of K. Iwasawa's Birth, M. Kurihara, K. Bannai, T. Ochiai and T. Tsuji, eds. (Tokyo: Mathematical Society of Japan, 2020)
We introduce a natural way to define Selmer groups and $p$-adic $L$-functions for modular forms of weight 1. The corresponding Galois representation $\rho$ of $\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ is a 2-dimensional Artin representation wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a44b4df4e416e672730cbaefae7f35d4
Publikováno v:
Representation Theory, Number Theory, and Invariant Theory ISBN: 9783319597270
We consider the p-adic distributions derived from Eisenstein series studied by Gelbart, Miller, Panchishkin, and Shahidi, whose Mellin transforms are reciprocals of the Kubota-Leopoldt p-adic L-function. These distributions were shown there to be mea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc92dd8369d40dd9cf57b76cba19bb89
https://doi.org/10.1007/978-3-319-59728-7_7
https://doi.org/10.1007/978-3-319-59728-7_7
Autor:
Marinda Li Wu, H. N. Cheng, Bradley D. Miller, Bradley Miller, Tiffany Hoerter, Jakoah Brgoch, William Richard (Rick) Ewing, Katherine Glasgow, Lynne Greenblatt, Laura Kosbar, Beatriz Rios-Mckee, Kimberly A. Woznack, William F. Carroll, Bryan R. Henry, Richard S. Danchik, Morton Z. Hoffman, Zafra M. Lerman, William H. Daly, Adriano D. Andricopulo, T. S. Andy Hor, Markus Behnke, Sanjeev Katti, Ajit Sapre, Peter Koelsch, Eloise Young, Lewis Whitehead, Evans Ogwagwa Changamu, Nina Dudnik, Patrick McCarren, Rajiv Chopra, Rem R. Fazio, David Qualter, Vinod Patel, Ryan Haas, Khampoua Naovarangsy, Bhaveshkumar Gami, Christopher Harwell, Jeffry D. Madura, Heather Burks, Solomon Derese, Michelle Lynn Hall, Ralph Greenberg, Sean Ohlinger, Juliette Pradon, Linda Wang, Lucy Kiruri, Colleen Dionne, Brigitta Tadmor, Jorge L. Colón, Darleane Christian Hoffman, Madeleine Jacobs, Zafra Margolin Lerman, Ann Nalley, Vanderlan da Silva Bolzani, Natacha Carvalho Ferreira Santos, Lydia R. Galagovsky, Barbara Loeb, Noemí Elisabeth Walsöe de Reca, Gheorghiţa Jinescu
Autor:
Ralph Greenberg
Publikováno v:
American Journal of Mathematics. 134:1167-1196
We consider an elliptic curve $E$ defined over ${\bf Q}$ which has an isogeny of prime degree $p$ defined over ${\bf Q}$. Assuming that $E$ does not have complex multiplication and that $p > 7$, we show that the image of the Galois representation def
Publikováno v:
The Bloch–Kato Conjecture for the Riemann Zeta Function
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::39e24fb9f82d44fcc8e13713a9c70bf3
https://doi.org/10.1017/cbo9781316163757.009
https://doi.org/10.1017/cbo9781316163757.009
Autor:
Romyar T. Sharifi, Mahesh Kakde, Ralph Greenberg, Martin J. Taylor, Ted Chinburg, George Pappas, Frauke M. Bleher
We begin a study of m-th Chern classes and m-th characteristic symbols for Iwasawa modules which are supported in codimension at least m. This extends the classical theory of characteristic ideals and their generators for Iwasawa modules which are to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::316643d13cff92d212e9d647af3309d8