Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Ralaivaosaona, Dimbinaina"'
Autor:
Dovgal, Sergey, de Panafieu, Élie, Ralaivaosaona, Dimbinaina, Rasendrahasina, Vonjy, Wagner, Stephan
Random directed graphs $D(n,p)$ undergo a phase transition around the point $p = 1/n$, and the width of the transition window has been known since the works of Luczak and Seierstad. They have established that as $n \to \infty$ when $p = (1 + \mu n^{-
Externí odkaz:
http://arxiv.org/abs/2009.12127
Higher rank motivic Donaldson-Thomas invariants of $\mathbb{A}^3$ via wall-crossing, and asymptotics
We compute, via motivic wall-crossing, the generating function of virtual motives of the Quot scheme of points on $\mathbb{A}^3$, generalising to higher rank a result of Behrend, Bryan and Szendr\H{o}i. We show that this motivic partition function co
Externí odkaz:
http://arxiv.org/abs/2004.07020
For any integer $d\geq 3$ such that $-d$ is a fundamental discriminant, we show that the Dirichlet $L$-function associated with the real primitive character $\chi(\cdot)=(\frac{-d}{\cdot})$ does not vanish on the positive part of the interval $[1-6.5
Externí odkaz:
http://arxiv.org/abs/2001.05782
An additive functional of a rooted tree is a functional that can be calculated recursively as the sum of the values of the functional over the branches, plus a certain toll function. Janson recently proved a central limit theorem for additive functio
Externí odkaz:
http://arxiv.org/abs/1810.00467
A tree functional is called additive if it satisfies a recursion of the form $F(T) = \sum_{j=1}^k F(B_j) + f(T)$, where $B_1,\ldots,B_k$ are the branches of the tree $T$ and $f(T)$ is a toll function. We prove a general central limit theorem for addi
Externí odkaz:
http://arxiv.org/abs/1605.03918
Autor:
Ralaivaosaona, Dimbinaina
Thesis (PhD)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: Various properties of integer partitions are studied in this work, in particular the number of summands, the number of ascents and the multiplicities of parts. We work on random part
ENGLISH ABSTRACT: Various properties of integer partitions are studied in this work, in particular the number of summands, the number of ascents and the multiplicities of parts. We work on random part
Externí odkaz:
http://hdl.handle.net/10019.1/20019
Publikováno v:
Applicable Analysis and Discrete Mathematics 2015 Volume 9, Issue 2, Pages: 285-312
In a multi-base representation of an integer (in contrast to, for example, the binary or decimal representation) the base (or radix) is replaced by products of powers of single bases. The resulting numeral system has desirable properties for fast ari
Externí odkaz:
http://arxiv.org/abs/1503.08594
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dovgal, Sergey, de Panafieu, Élie, Ralaivaosaona, Dimbinaina, Rasendrahasina, Vonjy, Wagner, Stephan
Publikováno v:
Random Structures & Algorithms; Mar2024, Vol. 64 Issue 2, p170-266, 97p
Publikováno v:
In Journal of Number Theory December 2016 169:250-264