Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Rakov, Mykhailo V."'
We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [Phys. Rev. A 95, 053608 (2017)]. In the low-energy regime, this system is governed by a unique $\mathbb{Z}_N$ ga
Externí odkaz:
http://arxiv.org/abs/2407.12109
Autor:
Rakov, Mykhailo V., Weyrauch, Michael
Publikováno v:
Phys. Rev. B 105, 024424 (2022)
We study the low-lying spectrum of the bilinear-biquadratic Heisenberg model in the dimerized and Haldane phases using a tensor renormalization method. At the (Takhtajan-Babujian) critical point the finite size spectrum predicted by the Wess-Zumino-W
Externí odkaz:
http://arxiv.org/abs/2111.04561
Autor:
Weyrauch, Michael, Rakov, Mykhailo V.
Publikováno v:
Phys. Rev. B 102, 104422 (2020)
We study the XXZ Heisenberg model in a staggered magnetic field using the HOTRG tensor renormalization method. Built into the tensor representation of the XXZ model is the U(1) symmetry, which is systematically maintained at each renormalization step
Externí odkaz:
http://arxiv.org/abs/2006.07306
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rakov, Mykhailo V., Weyrauch, Michael
Publikováno v:
Phys. Rev. B 100, 134434 (2019)
We study the XXZ Heisenberg model in a longitudinal magnetic field using a tensor renormalization method. Built into the tensor representation of the XXZ model is the U(1) symmetry, which is systematically maintained at each renormalization step. Thi
Externí odkaz:
http://arxiv.org/abs/1908.11362
Autor:
Rakov, Mykhailo V.
Publikováno v:
J. Low. Temp. Phys., Vol. 192, Iss. 1-2, pp. 75-87 (2018)
The algorithm to calculate the sets of symmetry sectors for virtual indices of U(1) symmetric matrix product states (MPS) is described. Principal differences between open (OBC) and periodic (PBC) boundary conditions are stressed, and the extension of
Externí odkaz:
http://arxiv.org/abs/1904.00274
Autor:
Weyrauch, Michael, Rakov, Mykhailo V.
Publikováno v:
Phys. Rev. B 96, 134404 (2017)
Two recent publications report different boundaries for the dimerized phase of the bilinear-biquadratic spin-1 Heisenberg model with quadratic Zeeman effect. We address these discrepancies for the biquadratic model with quadratic Zeeman term and expl
Externí odkaz:
http://arxiv.org/abs/1706.02254
Bilinear-biquadratic spin-1 rings: an SU(2)-symmetric MPS algorithm for periodic boundary conditions
Autor:
Rakov, Mykhailo V., Weyrauch, Michael
Publikováno v:
J. Phys. Commun. 1, 015007 (2017)
An efficient algorithm for SU(2) symmetric matrix product states (MPS) with periodic boundary conditions (PBC) is proposed and implemented. It is applied to a study of the spectrum and correlation properties of the spin-1 bilinear-biquadratic Heisenb
Externí odkaz:
http://arxiv.org/abs/1607.07376
Publikováno v:
Phys. Rev. B 93, 054417 (2016)
An efficient and stable algorithm for U(1) symmetric matrix product states (MPS) with periodic boundary conditions (PBC) is proposed. It is applied to a study of correlation and entanglement properties of the eigenstates of the spin-1/2 XXZ model wit
Externí odkaz:
http://arxiv.org/abs/1512.02007
Autor:
Weyrauch, Michael, Rakov, Mykhailo V.
Publikováno v:
Ukr. J. Phys. (2013), Vol. 58, No. 7, pages 657-665
We present an implementation of an efficient algorithm for the calculation of the spectrum of one-dimensional quantum systems with periodic boundary conditions. This algorithm is based on a matrix product representation for quantum states (MPS), and
Externí odkaz:
http://arxiv.org/abs/1303.1333