Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Rakhmanov, Evgenii A."'
Given a sequence of polynomials $Q_n$ of degree $n$, we consider the triangular table of derivatives $Q_{n, k}(x)=d^k Q_n(x) /d x^k$. Under the only assumption that the sequence $\{Q_n\}$ has a weak* limiting zero distribution (an empirical distribut
Externí odkaz:
http://arxiv.org/abs/2408.13851
Type I Hermite--Pad\'e polynomials for a set of functions $f_0, f_1, ..., f_s$ at infinity, $Q_{n,0}$, $Q_{n,1}$, ..., $Q_{n,s}$, is defined by the asymptotic condition $$ R_n(z):=\bigl(Q_{n,0}f_0+Q_{n,1}f_1+Q_{n,2}f_2+...+Q_{n,s}f_s\bigr)(z) =\mathc
Externí odkaz:
http://arxiv.org/abs/1502.01202
In 1986 J. Nuttall published in Constructive Approximation the paper "Asymptotics of generalized Jacobi polynomials", where with his usual insight he studied the behavior of the denominators ("generalized Jacobi polynomials") and the remainders of th
Externí odkaz:
http://arxiv.org/abs/1111.6139
We announce some new results on the convergence of Chebyshev--Pad\'e approximations to real-valued algebraic function given on the segment $[-1,1]$. The rate of convergence on the segment and in the corresponding maximal domain of meromorphity of a g
Externí odkaz:
http://arxiv.org/abs/1009.4813
Publikováno v:
First published in Contemp. Math. in 661 (2016), 199-228, published by the American Mathematical Society
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
Type I Hermite-Pad\'e polynomials for set of functions $f_0, f_1,..., f_s$ at infinity, $(Q_{n,0}f_0+Q_{n,1}f_1+Q_{n,2}f_2+...+Q_{n,s}f_s)(z)=O(\frac{1}{z^{sn+s}}), z\rightarrow \infty$ with the degree of all $Q_{n,k}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6e88febc608e75bc30eab0f694b3faf0
http://hdl.handle.net/10835/4880
http://hdl.handle.net/10835/4880
Type I Hermite--Pad�� polynomials for a set of functions $f_0, f_1, ..., f_s$ at infinity, $Q_{n,0}$, $Q_{n,1}$, ..., $Q_{n,s}$, is defined by the asymptotic condition $$ R_n(z):=\bigl(Q_{n,0}f_0+Q_{n,1}f_1+Q_{n,2}f_2+...+Q_{n,s}f_s\bigr)(z) =\ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fcf6b453dc36c9ea6c4739bf0a8da218
Publikováno v:
Contemporary Mathematics
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
In 1986 J. Nuttall published in Constructive Approximation the paper "Asymptotics of generalized Jacobi polynomials", where with his usual insight he studied the behavior of the denominators ("generalized Jacobi polynomials") and the remainders of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::953e792bd37e57c302bea93516fcf2ae
http://hdl.handle.net/10835/1589
http://hdl.handle.net/10835/1589
Publikováno v:
Communications in Mathematical Physics Volume 302, Number 1 (2011)
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
We investigate the asymptotic zero distribution of Heine-Stieltjes polynomials - polynomial solutions of a second order differential equations with complex polynomial coefficients. In the case when all zeros of the leading coefficients are all real,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9cf462338588015962d1cc29b8c5bb92
http://hdl.handle.net/10835/1628
http://hdl.handle.net/10835/1628
Publikováno v:
Contemporary Mathematics 507 (2010)
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
riUAL. Repositorio Institucional de la Universidad de Almería
Universidad de Almería
We investigate the strong asymptotics of Heine-Stieltjes polynomials - polynomial solutions of a second order differential equations with complex polynomial coefficients. The solution is given in terms of critical measures (saddle points of the weigh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a25435b931485cbd6431027276d7ffbc
http://hdl.handle.net/10835/1627
http://hdl.handle.net/10835/1627