Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Rajen Kumar Sinha"'
Autor:
Tanushree Ray, Rajen Kumar Sinha
Publikováno v:
Numerical Methods for Partial Differential Equations. 39:2935-2962
Autor:
Ram Manohar null, Rajen Kumar Sinha
Publikováno v:
Journal of Computational Mathematics. 40:147-176
Autor:
Tanushree Ray, Rajen Kumar Sinha
Publikováno v:
Calcolo. 60
Autor:
Shantiram Mahata, Rajen Kumar Sinha
Publikováno v:
Advances in Computational Mathematics. 48
Autor:
Shantiram Mahata, Rajen Kumar Sinha
Publikováno v:
IMA Journal of Numerical Analysis.
This paper considers fully discrete finite element approximations to subdiffusion equations with memory in a bounded convex polygonal domain. We first derive some regularity results for the solution with respect to both smooth and nonsmooth initial d
Autor:
Tanushree Ray, Rajen Kumar Sinha
Publikováno v:
Computers & Mathematics with Applications. 82:97-112
We consider an adaptive finite element method for solving parabolic interface problems with nonzero flux jumps in a two-dimensional convex polygonal domain. We use continuous, piecewise linear functions for the approximation of the spatial variable w
Autor:
Ram Manohar, Rajen Kumar Sinha
Publikováno v:
Journal of Scientific Computing. 91
An adaptive finite element method for semilinear parabolic interface problems with nonzero flux jump
Autor:
Rajen Kumar Sinha, Tanushree Ray
Publikováno v:
Applied Numerical Mathematics. 153:381-398
We present and analyze an adaptive finite element method for a semilinear parabolic interface problem subject to nonzero flux jump in a two-dimensional bounded convex polygonal domain. The residual-based a posteriori error estimates are derived using
Autor:
Tanushree Ray, Rajen Kumar Sinha
Publikováno v:
Journal of Computational and Applied Mathematics. 419:114714
Autor:
Rajen Kumar Sinha, Pratibha Shakya
Publikováno v:
Applicable Analysis. 100:2706-2734
The purpose of this paper is to study the a priori error analysis of finite element method for parabolic optimal control problem with measure data in a bounded convex domain. The solution of the st...