Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Rajan, Priyanka"'
Autor:
Alruwaili, Mohammed M., Zonneville, Justin, Naranjo, Maricris N., Serio, Hannah, Melendy, Thomas, Straubinger, Robert M., Gillard, Bryan, Foster, Barbara A., Rajan, Priyanka, Attwood, Kristopher, Chatley, Sarah, Iyer, Renuka, Fountzilas, Christos, Bakin, Andrei V.
Publikováno v:
In Cell Reports Medicine 19 March 2024 5(3)
Autor:
Smriti Das, Karuppannagounder Rajan Priyanka, Kolandhasamy Prabhu, Ramachandran Vinayagam, Rajendran Rajaram, Sang Gu Kang
Publikováno v:
Antibiotics, Vol 13, Iss 8, p 748 (2024)
Tidal wetlands, commonly known as salt marshes, are highly productive ecosystems in temperate regions worldwide. These environments constitute a unique flora composed primarily of salt-tolerant herbs, grasses, and shrubs. This study investigated the
Externí odkaz:
https://doaj.org/article/87236d4c5bd2499ba5bae78079d9cd3a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rajan, Priyanka, Natraj, Premkumar, Ranaweera, Sachithra S., Dayarathne, Lakshi A., Lee, Young Jae, Han, Chang-Hoon
Publikováno v:
In Food Research International December 2022 162 Part B
We endow each closed, orientable Alexandrov space $(X, d)$ with an integral current $T$ of weight equal to 1, $\partial T = 0 and \set(T) = X$, in other words, we prove that $(X, d, T)$ is an integral current space with no boundary. Combining this re
Externí odkaz:
http://arxiv.org/abs/1703.08195
Autor:
Ranaweera, Sachithra S., Natraj, Premkumar, Rajan, Priyanka, Dayarathne, Laksi A., Mihindukulasooriya, Suyama P., Dinh, Duong Thi Thuy, Jee, Youngheun, Han, Chang-Hoon
Publikováno v:
In The Journal of Nutritional Biochemistry February 2022 100
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
He, Chenxu, Rajan, Priyanka
We show that some embedded standard $13$-spheres in Shimada's exotic $15$-spheres have $\mathbb{Z}_2$ quotient spaces, $P^{13}$s, that are fake real $13$-dimensional projective spaces, i.e., they are homotopy equivalent, but not diffeomorphic to the
Externí odkaz:
http://arxiv.org/abs/1601.03723
Autor:
Rajan, Priyanka, Wilhelm, Frederick
We apply the lifting theorem of Searle and the second author to put metrics of almost nonnegative curvature on the fake RP^{6}s of Hirsch and Milnor and on the analogous fake RP^{14}s.
Externí odkaz:
http://arxiv.org/abs/1510.05320
Autor:
Rajan, Priyanka1 (AUTHOR), Natraj, Premkumar1 (AUTHOR), Kim, Nak Hyoung1 (AUTHOR), Kim, Jae-Hoon1 (AUTHOR), Choi, Hyuk Joon2 (AUTHOR), Han, Chang-Hoon1 (AUTHOR) chhan@jejunu.ac.kr
Publikováno v:
Laboratory Animal Research. 2/17/2023, Vol. 39 Issue 1, p1-12. 12p.