Zobrazeno 1 - 10
of 1 426
pro vyhledávání: '"Raiteri, M"'
Autor:
Raiteri M.
Publikováno v:
Rivista di Criminologia, Vittimologia e Sicurezza, Vol XIII, Iss 2, Pp 66-82 (2019)
This paper deals with some aspects arising from the most recent debate on the relationship between poverty and criminality, i.e.: housing poverty as a mostly feminine condition, the possible deflationary effects on crime rate that might be obtained b
Externí odkaz:
https://doaj.org/article/048550c0cb5c49bfa8712d661bd5945c
Autor:
Francaviglia, M., Raiteri, M.
Publikováno v:
Class.Quant.Grav. 21 (2004) 3459-3482
The variation of the energy for a gravitational system is directly defined from the Hamiltonian field equations of General Relativity. When the variation of the energy is written in a covariant form it splits into two (covariant) contributions: one o
Externí odkaz:
http://arxiv.org/abs/gr-qc/0402080
Publikováno v:
Class.Quant.Grav.20:5103-5120,2003
Starting from the SO(2,2n) Chern-Simons form in (2n+1) dimensions we calculate the variation of conserved quantities in Lovelock gravity and Lovelock-Maxwell gravity through the covariant formalism developed in gr-qc/0305047. Despite the technical co
Externí odkaz:
http://arxiv.org/abs/gr-qc/0308019
Publikováno v:
Class.Quant.Grav.20:4043-4066,2003
We present an alternative field theoretical approach to the definition of conserved quantities, based directly on the field equations content of a Lagrangian theory (in the standard framework of the Calculus of Variations in jet bundles). The contrac
Externí odkaz:
http://arxiv.org/abs/gr-qc/0305047
Publikováno v:
Class.Quant.Grav. 20 (2003) 483-506
We try to give hereafter an answer to some open questions about the definition of conserved quantities in Chern-Simons theory, with particular reference to Chern-Simons AdS_3 Gravity. Our attention is focused on the problem of global covariance and g
Externí odkaz:
http://arxiv.org/abs/gr-qc/0211098
A general recipe proposed elsewhere to define, via Noether theorem, the variation of energy for a natural field theory is applied to Einstein-Maxwell theory. The electromagnetic field is analysed in the geometric framework of natural bundles. Einstei
Externí odkaz:
http://arxiv.org/abs/gr-qc/0110104
Autor:
Francaviglia, M., Raiteri, M.
Publikováno v:
Class.Quant.Grav.19:237-258,2002
A general recipe to define, via Noether theorem, the Hamiltonian in any natural field theory is suggested. It is based on a Regge-Teitelboim-like approach applied to the variation of Noether conserved quantities. The Hamiltonian for General Relativit
Externí odkaz:
http://arxiv.org/abs/gr-qc/0107074
Publikováno v:
Class.Quant.Grav. 17 (2000) 4941-4958
A general definition of energy is given, via the N\"other theorem, for the N-body problem in (1+1) dimensional gravity. Within a first-order Lagrangian framework, the density of energy of a solution relative to a background is identified with the sup
Externí odkaz:
http://arxiv.org/abs/gr-qc/0008072
Publikováno v:
J.Math.Phys.42:1173-1195,2001
The Lagrangian proposed by York et al. and the covariant first order Lagrangian for General Relativity are introduced to deal with the (vacuum) gravitational field on a reference background. The two Lagrangians are compared and we show that the first
Externí odkaz:
http://arxiv.org/abs/gr-qc/0003019
Publikováno v:
Annals Phys. 284 (2000) 197-214
A geometrical framework for the definition of entropy in General Relativity via Noether theorem is briefly recalled and the entropy of Taub-Bolt Euclidean solutions of Einstein equations is then obtained as an application. The computed entropy agrees
Externí odkaz:
http://arxiv.org/abs/gr-qc/9906114