Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Rainer Opgen-Rhein"'
Autor:
Rainer Opgen-Rhein, Korbinian Strimmer
Publikováno v:
Revstat Statistical Journal, Vol 4, Iss 1 (2006)
A key aim of systems biology is to unravel the regulatory interactions among genes and gene products in a cell. Here we investigate a graphical model that treats the observed gene expression over time as realizations of random curves. This approach i
Externí odkaz:
https://doaj.org/article/d3463848ebe942bcb943597624c1e933
Autor:
Rainer Opgen-Rhein
Publikováno v:
Effizienz und Gerechtigkeit bei der Nutzung natürlicher Ressourcen.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::934f0b87f9d22b7f0d79e965e8c6191c
https://doi.org/10.2307/j.ctv1q69mhh.18
https://doi.org/10.2307/j.ctv1q69mhh.18
Publikováno v:
Opgen-Rhein, R, Fahrmeir, L & Strimmer, K 2005, ' Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo ', BMC Evolutionary Biology, vol. 5, no. 6 . https://doi.org/10.1186/1471-2148-5-6
BMC Evolutionary Biology, Vol 5, Iss 1, p 6 (2005)
BMC Evolutionary Biology
BMC Evolutionary Biology, Vol 5, Iss 1, p 6 (2005)
BMC Evolutionary Biology
Background Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=pmid_dedup__::7b3fc10adab72e7a09c27e50433fe08d
https://doi.org/10.1186/1471-2148-5-6
https://doi.org/10.1186/1471-2148-5-6
Publikováno v:
BMC Evolutionary Biology. 5:6
Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only conside
Autor:
Rainer Opgen-Rhein, Korbinian Strimmer
Publikováno v:
ResearcherID
High-dimensional case-control analysis is encountered in many different settings in genomics. In order to rank genes accordingly, many different scores have been proposed, ranging from ad hoc modifications of the ordinary t statistic to complicated h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0de0473cf249fea8b456b1db42ec5144
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000245335600007&KeyUID=WOS:000245335600007
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000245335600007&KeyUID=WOS:000245335600007
Autor:
Korbinian Strimmer, Rainer Opgen-Rhein
Publikováno v:
BMC Bioinformatics
Background Causal networks based on the vector autoregressive (VAR) process are a promising statistical tool for modeling regulatory interactions in a cell. However, learning these networks is challenging due to the low sample size and high dimension
Autor:
Rainer Opgen-Rhein, Korbinian Strimmer
Publikováno v:
BMC Systems Biology, Vol 1, Iss 1, p 37 (2007)
BMC Systems Biology
BMC Systems Biology
Background The use of correlation networks is widespread in the analysis of gene expression and proteomics data, even though it is known that correlations not only confound direct and indirect associations but also provide no means to distinguish bet