Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Rahmatullaev, M. M."'
We consider the Ising model with competing interactions and a nonzero external field on the Cayley tree of order two. We describe ground states and verify the Peierls condition for the model. Using a contour argument we show the existence of two diff
Externí odkaz:
http://arxiv.org/abs/2303.03045
We consider a nearest-neighbor solid-on-solid (SOS) model, with several spin values $0,1,\ldots,m,$ $m\geq2,$ and nonzero external field, on a Cayley tree of degree $k$ (with $k+1$ neighbors). We are aiming to extend the results of \cite{rs} where th
Externí odkaz:
http://arxiv.org/abs/2110.00730
Autor:
Rahmatullaev, M. M., Rasulova, M. A.
In this paper, we consider the Potts-SOS model where the spin takes values in the set $\{0, 1, 2\}$ on the Cayley tree of order two. We describe all the translation-invariant splitting Gibbs measures for this model in some conditions. Moreover, we in
Externí odkaz:
http://arxiv.org/abs/2104.00973
We consider a nearest-neighbor solid-on-solid (SOS) model, with several spin values $0,1,2,...,m, m\geq2$ and non zero external field, on a Cayley tree of order $k$. In the case $k=2, m=2$, we describe translation-invariant ground states for the SOS
Externí odkaz:
http://arxiv.org/abs/1908.02457
Autor:
Rahmatullaev, M. M., Rasulova, M. A.
In this paper for the Potts-SOS model on a Cayley tree under some conditions the existence of at least one periodic (non translation-invariant) Gibbs measure is proved.
Comment: in Russian
Comment: in Russian
Externí odkaz:
http://arxiv.org/abs/1803.00768
Autor:
Botirov, G. I., Rahmatullaev, M. M.
We consider Potts model, with competing interactions and countable spin values $\Phi=\{0,1,\dots \}$ on a Cayley tree of order three. We study periodic ground states for this model.
Externí odkaz:
http://arxiv.org/abs/1803.00769
Autor:
Mukhamedov, F. M.1,2,3 (AUTHOR) farrukh.m@uaeu.ac.ae, Rahmatullaev, M. M.3,4 (AUTHOR), Tukhtabaev, A. M.4 (AUTHOR), Mamadjonov, R.4 (AUTHOR)
Publikováno v:
Theoretical & Mathematical Physics. Aug2023, Vol. 216 Issue 2, p1238-1253. 16p.
We consider translation-invariant splitting Gibbs measures (TISGMs) for the $q$-state Potts model on a Cayley tree of order two. Recently a full description of the TISGMs was obtained, and it was shown in particular that at sufficiently low temperatu
Externí odkaz:
http://arxiv.org/abs/1504.01265
Autor:
Rozikov, U. A., Rahmatullaev, M. M.
For the Potts model on the Cayley tree, some explicit formulae of the free energies and entropies (according to vector-valued boundary conditions (BCs)) are obtained. They include translation-invariant, periodic, Dobrushin-like BCs, as well as those
Externí odkaz:
http://arxiv.org/abs/1404.5738
Autor:
Rahmatullaev, M. M.1 (AUTHOR), Karshiboev, O. Sh.2 (AUTHOR) okarshiboevsher@mail.ru
Publikováno v:
Phase Transitions. Dec2022, Vol. 95 Issue 12, p901-907. 7p.