Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Rahimi, Ahad"'
Let $R$ be a commutative Noetherian ring with identity (not necessarily local) and $\frak a$ a proper ideal of $R$. We study the invariance of some classes of $\frak a$-relative Cohen-Macaulay modules under pure ring homomorphisms and ring homomorphi
Externí odkaz:
http://arxiv.org/abs/2212.12027
The study of rings and modules with homological criteria is a cornerstone of commutative algebra. Let $R$ be a commutative Noetherian ring with identity (not necessarily local) and $\frak a$ a proper ideal of $R$. In this paper, a relative analogue o
Externí odkaz:
http://arxiv.org/abs/2212.07122
In this paper, we establish the global analogues of some dualities and equivalences in local algebra by developing the theory of relative Cohen-Macaulay modules. Let R be a commutative Noetherian ring (not necessarily local) with identity and a a pro
Externí odkaz:
http://arxiv.org/abs/2210.08551
Autor:
Rahimi, Ahad
Let $S=K[x_1, \dots, x_m, y_1, \dots, y_n]$ be the standard bigraded polynomial ring over a field $K$. Let $M$ be a finitely generated bigraded $S$-module and $Q=(y_1, \dots, y_n)$. We say $M$ has maximal depth with respect to $Q$ if there is an asso
Externí odkaz:
http://arxiv.org/abs/2007.05744
Autor:
Rahimi, Ahad
Let $(R,\mm)$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\pp$ of $M$ such that $\depth M=\dim R/\pp$. In this paper we study squarefree monomial ideals which have
Externí odkaz:
http://arxiv.org/abs/1907.11960
Autor:
Rahimi, Ahad
Let $(R,\mathfrak{m})$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak{p}$ of $M$ such that depth $M=\dim R/\mathfrak{p}$. In this paper, we study finitely ge
Externí odkaz:
http://arxiv.org/abs/1802.07596
Autor:
Ahmadi, Maryam, Rahimi, Ahad
Publikováno v:
Journal of Algebra & Its Applications; Oct2024, Vol. 23 Issue 12, p1-16, 16p
Autor:
Herzog, Jürgen, Rahimi, Ahad
In this paper we consider bi-Cohen-Macaulay graphs, and give a complete classification of such graphs in the case they are bipartite or chordal. General bi-Cohen-Macaulay graphs are classified up to separation. The inseparable bi-Cohen-Macaulay graph
Externí odkaz:
http://arxiv.org/abs/1508.07119
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.