Zobrazeno 1 - 10
of 43 893
pro vyhledávání: '"Raghav A"'
Autor:
Singh, Parul1, Tiwari, Harish Chandra1 dr.harishchandratiwari@gmail.com, Baranwal, Kavita1, Srivastava, Dhirendra Kumar1
Publikováno v:
Indian Journal of Community Health. Jan-Mar2023, Vol. 35 Issue 1, p15-20. 6p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Krause, Claudius, Giannelli, Michele Faucci, Kasieczka, Gregor, Nachman, Benjamin, Salamani, Dalila, Shih, David, Zaborowska, Anna, Amram, Oz, Borras, Kerstin, Buckley, Matthew R., Buhmann, Erik, Buss, Thorsten, Cardoso, Renato Paulo Da Costa, Caterini, Anthony L., Chernyavskaya, Nadezda, Corchia, Federico A. G., Cresswell, Jesse C., Diefenbacher, Sascha, Dreyer, Etienne, Ekambaram, Vijay, Eren, Engin, Ernst, Florian, Favaro, Luigi, Franchini, Matteo, Gaede, Frank, Gross, Eilam, Hsu, Shih-Chieh, Jaruskova, Kristina, Käch, Benno, Kalagnanam, Jayant, Kansal, Raghav, Kim, Taewoo, Kobylianskii, Dmitrii, Korol, Anatolii, Korcari, William, Krücker, Dirk, Krüger, Katja, Letizia, Marco, Li, Shu, Liu, Qibin, Liu, Xiulong, Loaiza-Ganem, Gabriel, Madula, Thandikire, McKeown, Peter, Melzer-Pellmann, Isabell-A., Mikuni, Vinicius, Nguyen, Nam, Ore, Ayodele, Schweitzer, Sofia Palacios, Pang, Ian, Pedro, Kevin, Plehn, Tilman, Pokorski, Witold, Qu, Huilin, Raikwar, Piyush, Raine, John A., Reyes-Gonzalez, Humberto, Rinaldi, Lorenzo, Ross, Brendan Leigh, Scham, Moritz A. W., Schnake, Simon, Shimmin, Chase, Shlizerman, Eli, Soybelman, Nathalie, Srivatsa, Mudhakar, Tsolaki, Kalliopi, Vallecorsa, Sofia, Yeo, Kyongmin, Zhang, Rui
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few t
Externí odkaz:
http://arxiv.org/abs/2410.21611
This study proposes an advanced Federated Learning (FL) framework designed to enhance data privacy and security in IoT environments by integrating Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Comput
Externí odkaz:
http://arxiv.org/abs/2410.20259
Autor:
Bongole, Raghav, Gouverneur, Amaury, Rodríguez-Gálvez, Borja, Oechtering, Tobias J., Skoglund, Mikael
We study agents acting in an unknown environment where the agent's goal is to find a robust policy. We consider robust policies as policies that achieve high cumulative rewards for all possible environments. To this end, we consider agents minimizing
Externí odkaz:
http://arxiv.org/abs/2410.16013
We present a quantum computational framework for SU(2) lattice gauge theory, leveraging continuous variables instead of discrete qubits to represent the infinite-dimensional Hilbert space of the gauge fields. We consider a ladder as well as a two-dim
Externí odkaz:
http://arxiv.org/abs/2410.14580
Autor:
Özer, Burak, Ochkan, Kyrylo, Chaturvedi, Raghav, Maltsev, Evgenii, Könye, Viktor, Giraud, Romain, Veyrat, Arthur, Hankiewicz, Ewelina M., Watanabe, Kenji, Taniguchi, Takashi, Büchner, Bernd, Brink, Jeroen van den, Fulga, Ion Cosma, Dufouleur, Joseph, Veyrat, Louis
Quantum Hall phases have recently emerged as a platform to investigate non-Hermitian topology in condensed-matter systems. This platform is particularly interesting due to its tunability, which allows to modify the properties and topology of the inve
Externí odkaz:
http://arxiv.org/abs/2410.14329
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models. However, applying LoRA in federated learning environments, where data is distributed across multiple clients, presents unique challenges. Existing metho
Externí odkaz:
http://arxiv.org/abs/2410.09432
Star formation rates (SFRs) are a crucial observational tracer of galaxy formation and evolution. Spectroscopy, which is expensive, is traditionally used to estimate SFRs. This study tests the possibility of inferring SFRs of large samples of galaxie
Externí odkaz:
http://arxiv.org/abs/2410.06736
The research focuses on determining the metallicity ([Fe/H]) predicted in the solar twin stars by using various regression modeling techniques which are, Random Forest, Linear Regression, Decision Tree, Support Vector, and Gradient Boosting. The data
Externí odkaz:
http://arxiv.org/abs/2410.06709