Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Raffaele, Vitulli"'
Autor:
Fabio Bovenga, Dominique Derauw, Fabio Michele Rana, Christian Barbier, Alberto Refice, Nicola Veneziani, Raffaele Vitulli
Publikováno v:
Remote Sensing, Vol 6, Iss 9, Pp 8822-8843 (2014)
This work investigates the possibility of performing target analysis through the Multi-Chromatic Analysis (MCA), a technique that basically explores the information content of sub-band images obtained by processing portions of the range spectrum of a
Externí odkaz:
https://doaj.org/article/e8dbf24f059740b99147fcbf2b6f8127
Autor:
Raffaele Vitulli, Winston Olson-Duvall, Amruta Yelamanchili, Brian H. Kahn, Robert O. Green, Steve Chien, Macey W. Sandford, David R. Thompson
Publikováno v:
Atmospheric Measurement Techniques, Vol 13, Pp 7047-7057 (2020)
New methods for optimizing data storage and transmission are required as orbital imaging spectrometers collect ever-larger data volumes due to increases in optical efficiency and resolution. In Earth surface investigations, storage and downlink volum
Autor:
Cinzia Lastri, Raffaele Vitulli, Giulio Coluccia, Daniela Coltuc, Ivan Pippi, Chiara Ravazzi, Alessandro Zuccaro Marchi, Enrico Magli, Valentina Raimondi, Donatella Guzzi, Vanni Nardino, Lorenzo Palombi, Florin Garoi
Publikováno v:
IEEE Transactions on Big Data (2019). doi:10.1109/TBDATA.2019.2907135
info:cnr-pdr/source/autori:Giulio Coluccia, Cinzia Lastri, Donatella Guzzi, Enrico Magli, Vanni Nardino, Lorenzo Palombi, Ivan Pippi, Valentina Raimondi, Chiara Ravazzi, Florin Garoi, Daniela Coltuc, Raffaele Vitulli, Alessandro Zuccaro Marchi/titolo:Optical Compressive Imaging Technologies for Space Big Data/doi:10.1109%2FTBDATA.2019.2907135/rivista:IEEE Transactions on Big Data/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Giulio Coluccia, Cinzia Lastri, Donatella Guzzi, Enrico Magli, Vanni Nardino, Lorenzo Palombi, Ivan Pippi, Valentina Raimondi, Chiara Ravazzi, Florin Garoi, Daniela Coltuc, Raffaele Vitulli, Alessandro Zuccaro Marchi/titolo:Optical Compressive Imaging Technologies for Space Big Data/doi:10.1109%2FTBDATA.2019.2907135/rivista:IEEE Transactions on Big Data/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume
The increasing amount of data generated by space applications poses several challenges due to limited resources available onboard: power, memory, computation, data rate. In this paper, we propose Compressed Sensing (CS) as the key tool to face those
Autor:
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, Winston Olson-Duvall
New methods for optimizing data storage and transmission are required as orbital imaging spectrometers collect ever-larger data volumes due to increases in optical efficiency and resolution. In Earth surface investigations, storage and downlink volum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f20e6a0f2ba969ca39e5ad620fa163c
https://doi.org/10.5194/amt-2020-139
https://doi.org/10.5194/amt-2020-139
Publikováno v:
Journal of Electrical and Computer Engineering, Vol 2012 (2012)
This study measures the impact of both on-board and user-side lossy image compression (CCSDS-IDC and JPEG 2000) on image quality and classification. The Sentinel-2 Image Performance Simulator was modified to include these compression algorithms in or
Externí odkaz:
https://doaj.org/article/c0fa97f6874c4569bb586c709d8f242d
Autor:
Aaron, Kiely, Matthew, Klimesh, Ian, Blanes, Jonathan, Ligo, Magli, Enrico, Nazeeh, Aranki, Michael, Burl, Roberto, Camarero, Michael, Cheng, Sam, Dolinar, David, Dolman, Greg, Flesch, Hamid, Ghassemi, Martin, Gilbert, Miguel, Hernández-Cabronero, Didier, Keymeulen, Martin, Le, Huy, Luong, Christopher, Mcguinness, Gilles, Moury, Thang, Pham, Martin, Plintovic, Frederic, Sala, Lucana, Santos, Alan, Schaar, Joan, Serra-Sagristà, Simon, Shin, Brenton, Sundlie, Valsesia, Diego, Raffaele, Vitulli, Englin, Wong, William, Wu, Hua, Xie, Hanying, Zhou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2153::6c1313a7c3fa6dc1f9b2095799a05a13
http://hdl.handle.net/11583/2728880
http://hdl.handle.net/11583/2728880
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 7:1473-1480
Differently to the case of a conventional spaceborne nadir-looking mono-static radar altimeter, where the fly-around time of the pulses remains basically constant (assuming an almost circular orbit around an almost spherical Earth), the bistatic geom
Publikováno v:
International Journal of Remote Sensing. 39:1951-1952
Autor:
Christian Barbier, Raffaele Vitulli, Fabio Bovenga, Dominique Derauw, Alberto Refice, Fabio Michele Rana, N. Veneziani
Publikováno v:
Remote Sensing
Volume 6
Issue 9
Pages 8822-8843
Remote Sensing, Vol 6, Iss 9, Pp 8822-8843 (2014)
Remote sensing (Basel) 6 (2014): 8822–8843. doi:10.3390/rs6098822
info:cnr-pdr/source/autori:Bovenga, Fabio; Derauw, Dominique; Rana, Fabio Michele; Barbier, Christian; Refice, Alberto; Veneziani, Nicola; Vitulli, Raffaele/titolo:Multi-Chromatic Analysis of SAR Images for Coherent Target Detection/doi:10.3390%2Frs6098822/rivista:Remote sensing (Basel)/anno:2014/pagina_da:8822/pagina_a:8843/intervallo_pagine:8822–8843/volume:6
Volume 6
Issue 9
Pages 8822-8843
Remote Sensing, Vol 6, Iss 9, Pp 8822-8843 (2014)
Remote sensing (Basel) 6 (2014): 8822–8843. doi:10.3390/rs6098822
info:cnr-pdr/source/autori:Bovenga, Fabio; Derauw, Dominique; Rana, Fabio Michele; Barbier, Christian; Refice, Alberto; Veneziani, Nicola; Vitulli, Raffaele/titolo:Multi-Chromatic Analysis of SAR Images for Coherent Target Detection/doi:10.3390%2Frs6098822/rivista:Remote sensing (Basel)/anno:2014/pagina_da:8822/pagina_a:8843/intervallo_pagine:8822–8843/volume:6
This work investigates the possibility of performing target analysis through the Multi-Chromatic Analysis (MCA), a technique that basically explores the information content of sub-band images obtained by processing portions of the range spectrum of a
Publikováno v:
AHS
In this paper, we present an FPGA implementation of a novel adaptive and predictive algorithm for lossy hyperspectral image compression. This algorithm was specifically designed for on-board compression, where FPGAs are the most attractive and popula