Zobrazeno 1 - 10
of 185
pro vyhledávání: '"Raffaele, Perego"'
Autor:
Francesco Busolin, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Salvatore Trani
Publikováno v:
IEEE Access, Vol 11, Pp 126691-126704 (2023)
The ranking pipelines of modern search platforms commonly exploit complex machine-learned models and have a significant impact on the query response time. In this paper, we discuss several techniques to speed up the document scoring process based on
Externí odkaz:
https://doaj.org/article/e3b25de9f0424526ae61793a43ff02df
Autor:
Claudio Lucchese, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego, Salvatore Trani
Publikováno v:
SoftwareX, Vol 12, Iss , Pp 100614- (2020)
RankEval is a Python open-source tool for the analysis and evaluation of ranking models based on ensembles of decision trees. Learning-to-Rank (LtR) approaches that generate tree-ensembles are considered the most effective solution for difficult rank
Externí odkaz:
https://doaj.org/article/5a6ce575423a45dc80eb79de607e1d04
Autor:
Lucia Otero Varela, Marie-Annick Le Pogam, Amy Metcalfe, Pia Kjær Kristensen, Phil Hider, Alka Patel, Hongsoo Kim, Emanuele Carlini, Raffaele Perego, Rosa Gini
Publikováno v:
International Journal of Population Data Science, Vol 5, Iss 1 (2020)
Introduction The International Methodology Consortium for Coded Health Information (IMeCCHI) is a collaboration of health services researchers who promote methodological advances in coded health information. The IMeCCHI-DATANETWORK initiative focuses
Externí odkaz:
https://doaj.org/article/a12efdd6d4564b87bad3cd9996a040ae
Autor:
Veronica Gil-Costa, Fernando Loor, Salvatore Trani, Franco Maria Nardini, Romina Soledad Molina, Raffaele Perego
Publikováno v:
Journal of parallel and distributed computing
155 (2021): 38–49. doi:10.1016/j.jpdc.2021.04.008
info:cnr-pdr/source/autori:Molina R.; Loor F.; Gil-Costa V.; Nardini F.M.; Perego R.; Trani S./titolo:Efficient traversal of decision tree ensembles with FPGAs/doi:10.1016%2Fj.jpdc.2021.04.008/rivista:Journal of parallel and distributed computing (Print)/anno:2021/pagina_da:38/pagina_a:49/intervallo_pagine:38–49/volume:155
155 (2021): 38–49. doi:10.1016/j.jpdc.2021.04.008
info:cnr-pdr/source/autori:Molina R.; Loor F.; Gil-Costa V.; Nardini F.M.; Perego R.; Trani S./titolo:Efficient traversal of decision tree ensembles with FPGAs/doi:10.1016%2Fj.jpdc.2021.04.008/rivista:Journal of parallel and distributed computing (Print)/anno:2021/pagina_da:38/pagina_a:49/intervallo_pagine:38–49/volume:155
System-on-Chip (SoC) based Field Programmable Gate Arrays (FPGAs) provide a hardware acceleration technology that can be rapidly deployed and tuned, thus providing a flexible solution adaptable to specific design requirements and to changing demands.
Autor:
Marie Annick Le Pogam, Amy Metcalf, Søren Paaske Johnsen, Phil Hider, Alka Patel, Hongsoo Kim, Emanuele Carlini, Raffaele Perego, Hude Quan, Rosa Gini
Publikováno v:
International Journal of Population Data Science, Vol 1, Iss 1 (2017)
ABSTRACT Objectives The International Methodology Consortium for Coded Health Information (IMECCHI), an international collaboration of health services researchers, launched the IMECCHI-DATANETWORK initiative in October 2015. Its main objective is
Externí odkaz:
https://doaj.org/article/14f74323e4924bf7a91a41aeca43680f
Publikováno v:
SIGIR '22-45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2255–2259, Madrid, Spain, 11-15/07/2022
Interpretable Learning to Rank (LtR) is an emerging field within the research area of explainable AI, aiming at developing intelligible and accurate predictive models. While most of the previous research efforts focus on creating post-hoc explanation
Autor:
Fabrizio Sebastiani, Raffaele Perego
Publikováno v:
ACM SIGIR Forum. 55:1-5
The 43rd European Conference on Information Retrieval (ECIR 2021), organized under the auspices of the Information Retrieval Specialist Group of the British Computer Society (BCS IRSG), took place between March 28 and April 1, 2021. As sadly customar
Autor:
Matheus Henrique Schaly, Rafael de Santiago, Vania Bogorny, Chiara Renso, Luis Otavio Alvares, Yuri Santa Rosa Nassar dos Santos, Raffaele Perego
Publikováno v:
BRACIS 2021-10th Brazilian Conference on Intelligent Systems, pp. 375–389, Online Conference, 29/11/2021-3/12/2021
Intelligent Systems ISBN: 9783030917012
info:cnr-pdr/source/autori:Santa Rosa Nassar dos Santos Y.; de Santiago R.; Perego R.; Schaly M.H.; Alvares L.O.; Renso C.; Bogorny V./congresso_nome:BRACIS 2021-10th Brazilian Conference on Intelligent Systems/congresso_luogo:Online Conference/congresso_data:29%2F11%2F2021-3%2F12%2F2021/anno:2021/pagina_da:375/pagina_a:389/intervallo_pagine:375–389
Intelligent Systems ISBN: 9783030917012
info:cnr-pdr/source/autori:Santa Rosa Nassar dos Santos Y.; de Santiago R.; Perego R.; Schaly M.H.; Alvares L.O.; Renso C.; Bogorny V./congresso_nome:BRACIS 2021-10th Brazilian Conference on Intelligent Systems/congresso_luogo:Online Conference/congresso_data:29%2F11%2F2021-3%2F12%2F2021/anno:2021/pagina_da:375/pagina_a:389/intervallo_pagine:375–389
Co-clustering is a specific type of clustering that addresses the problem of simultaneously clustering objects and attributes of a data matrix. Although general clustering techniques find non-overlapping co-clusters, finding possible overlaps between
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba5bd6529b44c17dea084462fbdb8995
https://zenodo.org/record/5970008
https://zenodo.org/record/5970008
The semantic enrichment of mobility data with several information sources has led to a new type of movement data, the so-called multiple aspect trajectories. Comparing multiple aspect trajectories is crucial for several analysis tasks like querying,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2659::be3d11a4f1647834ae110086649eef65
https://zenodo.org/record/5902276
https://zenodo.org/record/5902276
Publikováno v:
ECIR 2022-44th European Conference on IR Research, pp. 184–198, Stavanger, Norway, 10-14/04/2022
Lecture Notes in Computer Science ISBN: 9783030997359
Lecture Notes in Computer Science ISBN: 9783030997359
The rapid growth in the number and complexity of conversational agents has highlighted the need for suitable evaluation tools to describe their performance. The main evaluation paradigms move from analyzing conversations where the user explores infor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e54cc3ec169eabe85f9dac78fd6e018e
http://hdl.handle.net/11577/3443461
http://hdl.handle.net/11577/3443461