Zobrazeno 1 - 10
of 221
pro vyhledávání: '"Rafeiro, Humberto"'
We consider a Riesz $\phi$-variation for functions $f$ defined on the real line when $\varphi:\Omega\times[0,\infty)\to[0,\infty)$ is a generalized $\Phi$-function. We show that it generates a quasi-Banach space and derive an explicit formula for the
Externí odkaz:
http://arxiv.org/abs/2204.14128
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ismael, Hajar F., Arif, Özkul, Murad, Muhammad Amin S., Bulut, Hasan, Shah, Nehad Ali, Ahmed, Shams Forruque, Rafeiro, Humberto
Publikováno v:
Journal of Mathematics; 10/25/2024, Vol. 2024, p1-11, 11p
Publikováno v:
Boletín de la Sociedad Matemática Mexicana; Jul2024, Vol. 30 Issue 2, p1-16, 16p
In the setting of homogeneous spaces (X,d,{\mu}), it is shown that the commutator of Calder\'on- Zygmund type operators as well as commutator of potential operator with BMO function are bounded in generalized Grand Morrey space. Interior estimates fo
Externí odkaz:
http://arxiv.org/abs/1205.6709
In this paper we introduce generalized grand Morrey spaces in the framework of quasimetric measure spaces, in the spirit of the so-called grand Lebesgue spaces. We prove a kind of reduction lemma which is applicable to a variety of operators to reduc
Externí odkaz:
http://arxiv.org/abs/1204.2208
Autor:
Rafeiro, Humberto
Publikováno v:
In Advances in harmonic analysis and operator theory, volume 229 of Oper. Theory Adv. Appl., pages 349-356. Birkhauser/Springer Basel AG, Basel, 2013
In this note we introduce grand grand Morrey spaces, in the spirit of the grand Lebesgue spaces. We prove a kind of \textit{reduction lemma} which is applicable to a variety of operators to reduce their boundedness in grand grand Morrey spaces to the
Externí odkaz:
http://arxiv.org/abs/1109.2550
Autor:
Rafeiro, Humberto, Samko, Stefan
Publikováno v:
Journal of Mathematical Analysis and Applications, Volume 365, Issue 2, 2010, Pages 483-497
Under the standard assumptions on the variable exponent $p(x)$ (log- and decay conditions), we give a characterization of the variable exponent Bessel potential space $\mathfrak B^\alpha[L^{p(\cdot)}(\mathbb R^n)]$ in terms of the rate of convergence
Externí odkaz:
http://arxiv.org/abs/0904.3567
Autor:
Rafeiro, Humberto
Publikováno v:
Proc. A. Razmadze Math. Inst. 150 (2009), 105-113.
The well-known Kolmogorov compactness criterion is extended to the case of variable exponent Lebesgue spaces $L^{p(\cdot)}({\Omega})$, where $\Omega$ is a bounded open set in $\mathbb R^n$ and $p(\cdot)$ satisfies some "standard" conditions. Our fina
Externí odkaz:
http://arxiv.org/abs/0903.3214
Autor:
Goginava, Ushangi1 (AUTHOR), Rafeiro, Humberto1 (AUTHOR) rafeiro@uaeu.ac.ae
Publikováno v:
International Journal of Mathematical Education in Science & Technology. May2024, p1-6. 6p.