Zobrazeno 1 - 10
of 264
pro vyhledávání: '"Rafal A. Angryk"'
Publikováno v:
Frontiers in Astronomy and Space Sciences, Vol 9 (2022)
Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The ex
Externí odkaz:
https://doaj.org/article/6b45f5c1f9ef46ddb4ec9bd3755d2565
Autor:
Anli Ji, Xumin Cai, Nigar Khasayeva, Manolis K. Georgoulis, Petrus C. Martens, Rafal A. Angryk, Berkay Aydin
Publikováno v:
The Astrophysical Journal Supplement Series, Vol 265, Iss 1, p 28 (2023)
Magnetic polarity inversion lines (PILs) detected in solar active regions have long been recognized as arguably the most essential feature for triggering instabilities such as flares and eruptive events (i.e., eruptive flares and coronal mass ejectio
Externí odkaz:
https://doaj.org/article/3ab52925c6644baaada588e34b1ff222
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. 45:1501-1513
In Machine Learning, a supervised model's performance is measured using the evaluation metrics. In this study, we first present our motivation by revisiting the major limitations of these metrics, namely one-dimensionality, lack of context, lack of i
Publikováno v:
SoftwareX, Vol 12, Iss , Pp 100518- (2020)
We developed a domain-independent Python package to facilitate the preprocessing routines required in preparation of any multi-class, multivariate time series data. It provides a comprehensive set of 48 statistical features for extracting the importa
Externí odkaz:
https://doaj.org/article/dab28fbdd76a4ac49b5fff615e2c0866
Publikováno v:
Neural Computing and Applications. 34:13339-13353
Publikováno v:
Artificial Intelligence and Soft Computing ISBN: 9783031234798
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1302bfae5b5dbaaacb51d39b75e791b8
https://doi.org/10.1007/978-3-031-23480-4_13
https://doi.org/10.1007/978-3-031-23480-4_13
Autor:
Rafal A. Angryk, Manolis K. Georgoulis, Azim Ahmadzadeh, Dustin Kempton, Yang Chen, Junzhi Wen
We report on progress made by our Data Mining Lab at Georgia State University on the interdisciplinary research project funded by the NSF-OAC-1931555 award. We take on two main challenges hindering data-driven solar flare forecasting, which are: (1)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::461498ef6bf8544b8fc9adc07f0b47bd
Publikováno v:
Geoinformatica
Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region obje
Autor:
Manolis K. Georgoulis, Sunitha Basodi, Sushant S. Mahajan, Dustin J. Kempton, Soukaina Filali Boubrahimi, Petrus C. Martens, Azim Ahmadzadeh, Rafal A. Angryk, Michael A. Schuh, Berkay Aydin, Xumin Cai, Shah Muhammad Hamdi
Publikováno v:
Scientific Data, Vol 7, Iss 1, Pp 1-13 (2020)
Scientific Data
Scientific Data
We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset also includes a cross-checked N
Publikováno v:
Information Management and Big Data ISBN: 9783031044465
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::63ba2f4401ba9bf6422f054245b65655
https://doi.org/10.1007/978-3-031-04447-2_26
https://doi.org/10.1007/978-3-031-04447-2_26