Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Rafael Massambone"'
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization problems. In general, we consider problems in which the objective function is composed of a finite sum of convex functions and the set of constraints
Publikováno v:
Inverse Problems, Volume 32, Number 11, 2016
We present a method for non-smooth convex minimization which is based on subgradient directions and string-averaging techniques. In this approach, the set of available data is split into sequences (strings) and a given iterate is processed independen
Externí odkaz:
http://arxiv.org/abs/1610.05823
Publikováno v:
Biblioteca Digital de Teses e Dissertações da UELUniversidade Estadual de LondrinaUEL.
Um modelo de memória associativa (AM, Associative Memory), dado por uma rede neural fuzzy em que os neurônios efetuam operações elementares da morfologia matemática (MM) e que é usado para o armazenamento e recordação de padrões fuzzy, é ch
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The problem of covering a region of the plane with a fixed number of minimum-radius identical balls is studied in the present work. An explicit construction of bi-Lipschitz mappings is provided to model small perturbations of the union of balls. This
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We investigate the problem of covering a region in the plane with the union of $m$ identical balls of minimum radius. The region to be covered may be disconnected, be nonconvex, have Lipschitz boun...
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We present a method to solve constrained convex stochastic optimization problems when the objective is a finite sum of convex functions fi. Our method is based on Incremental Stochastic Subgradient...
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization problems. In general, we consider problems in which the objective function is composed of a finite sum of convex functions and the set of constraints
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dabd55b39e14743d8b70fbc46cc31765
https://doi.org/10.11606/t.55.2017.tde-14112017-150512
https://doi.org/10.11606/t.55.2017.tde-14112017-150512
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization problems. In general, we consider problems in which the objective function is composed of a finite sum of convex functions and the set of constraints
Publikováno v:
Anais do 9. Congresso Brasileiro de Redes Neurais.
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We present a method for non-smooth convex minimization which is based on subgradient directions and string-averaging techniques. In this approach, the set of available data is split into sequences (strings) and a given iterate is processed independen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94bdd6082d2a48b6f49c38f22ae57fdc