Zobrazeno 1 - 10
of 414
pro vyhledávání: '"Radu-Emil Precup"'
Autor:
Alexandru Topîrceanu, Radu-Emil Precup
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
Abstract Computational models for large, resurgent epidemics are recognized as a crucial tool for predicting the spread of infectious diseases. It is widely agreed, that such models can be augmented with realistic multiscale population models and by
Externí odkaz:
https://doaj.org/article/ec6924d5ab8f4b91a2a9e41c10f0bd16
Publikováno v:
Facta Universitatis. Series: Mechanical Engineering, Vol 17, Iss 3, Pp 285-308 (2019)
The aim of this paper is to present several approaches by which technology can assist medical decision-making. This is an essential, but also a difficult activity, which implies a large number of medical and technical aspects. But, more important, it
Externí odkaz:
https://doaj.org/article/61b2b73f82b44c339d7e960815f8f2a9
Autor:
Radu-Emil Precup, Radu-Codrut David, Raul-Cristian Roman, Emil M. Petriu, Alexandra-Iulia Szedlak-Stinean
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 14, Iss 1 (2021)
This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy controllers represented by Takagi–Sugeno–Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out u
Externí odkaz:
https://doaj.org/article/2a45e6294daa45fba513046970c682c1
Publikováno v:
Studies in Informatics and Control. 32:5-14
Autor:
Claudiu Pozna, Radu-Emil Precup
Publikováno v:
Acta Polytechnica Hungarica. 20:195-214
Publikováno v:
IEEE Transactions on Fuzzy Systems. 30:4286-4297
Autor:
Radu-Emil Precup, Stefan Preitl, Claudia-Adina Bojan-Dragos, Mircea-Bogdan Radac, Alexandra-Iulia Szedlak-Stinean, Elena-Lorena Hedrea, Raul-Cristian Roman
Publikováno v:
Facta Universitatis. Series: Mechanical Engineering, Vol 15, Iss 2, Pp 231-244 (2017)
This paper presents theoretical and application results concerning the development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, which will be viewed as controlled processes, in the field of automotive applications. The two dyn
Externí odkaz:
https://doaj.org/article/fc8fa057d1a946cd87e0a6060f92b9a5
Publikováno v:
International Journal of General Systems. 52:1-47
Publikováno v:
Information Sciences. 585:162-175
This paper presents a new Reinforcement Learning (RL)-based control approach that uses the Policy Iteration (PI) and a metaheuristic Grey Wolf Optimizer (GWO) algorithm to train the Neural Networks (NNs). Due to an efficient tradeoff to exploration a
Publikováno v:
Procedia Computer Science. 199:63-70