Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Radu Ciucanu"'
Publikováno v:
2022 IEEE 38th International Conference on Data Engineering (ICDE)
2022 IEEE 38th International Conference on Data Engineering (ICDE), May 2022, Online (hosted in Kuala Lumpur), Malaysia. pp.3154-3157, ⟨10.1109/ICDE53745.2022.00286⟩
2022 IEEE 38th International Conference on Data Engineering (ICDE), May 2022, Online (hosted in Kuala Lumpur), Malaysia. pp.3154-3157, ⟨10.1109/ICDE53745.2022.00286⟩
International audience; The federated learning paradigm allows several data owners to contribute to a machine learning task without exposing their potentially sensitive data. We focus on cumulative reward maximization in Multi-Armed Bandits (MAB), a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef21cebf812c13966efd500f70c857d8
https://hal.science/hal-03754364
https://hal.science/hal-03754364
Publikováno v:
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing, 2022, ⟨10.1109/TDSC.2022.3154585⟩
IEEE Transactions on Dependable and Secure Computing, 2022, ⟨10.1109/TDSC.2022.3154585⟩
International audience; The stochastic multi-armed bandit is a classical reinforcement learning model, where a learning agent sequentially chooses an action (pull a bandit arm) and the environment responds with a stochastic reward drawn from an unkno
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::54a9f1007caa9a58fee86b0467cd3cd3
https://inria.hal.science/hal-03595189
https://inria.hal.science/hal-03595189
Publikováno v:
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research, 2022, 73, pp.737--765
Journal of Artificial Intelligence Research, 2022, 73, pp.737--765
International audience; The multi-armed bandit is a reinforcement learning model where a learning agent repeatedly chooses an action (pull a bandit arm) and the environment responds with a stochastic outcome (reward) coming from an unknown distributi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4dcfccb76c60811d1f8492e0ccffd1eb
https://inria.hal.science/hal-03553894
https://inria.hal.science/hal-03553894
Publikováno v:
ACM International Conference on Information and Knowledge Management (CIKM)-Demo track. Accepté, à paraître
ACM International Conference on Information and Knowledge Management (CIKM)-Demo track. Accepté, à paraître, Nov 2021, Online, Australia
CIKM
Proceedings of the 30th ACM International Conference on Information & Knowledge Management
ACM International Conference on Information and Knowledge Management (CIKM)-Demo track. Accepté, à paraître, Nov 2021, Online, Australia
CIKM
Proceedings of the 30th ACM International Conference on Information & Knowledge Management
International audience; Data summarization provides a bird's eye view of data and groupby queries have been the method of choice for data summarization. Such queries provide the ability to group by some attributes and aggregate by others, and their r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e985cccb62262e82dcaf81991bfb9dc
https://hal.inria.fr/hal-03320843
https://hal.inria.fr/hal-03320843
Publikováno v:
International Conference on Provable and Practical Security (ProvSec)
International Conference on Provable and Practical Security (ProvSec), Nov 2020, Conférence online, Singapore. pp.257-277, ⟨10.1007/978-3-030-62576-4_13⟩
Provable and Practical Security ISBN: 9783030625757
ProvSec
International Conference on Provable and Practical Security (ProvSec), Nov 2020, Conférence online, Singapore. pp.257-277, ⟨10.1007/978-3-030-62576-4_13⟩
Provable and Practical Security ISBN: 9783030625757
ProvSec
International audience; The linear stochastic multi-armed bandit is a sequential learning setting, where, at each round, a learner chooses an arm and receives a stochastic reward based on an unknown linear function of the chosen arm. The goal is to c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94dfd04a924ecbe7e56d673edb6b24e9
https://hal.inria.fr/hal-02942694
https://hal.inria.fr/hal-02942694
Autor:
Radu Ciucanu, pascal lafourcade
Publikováno v:
International Semantic Web Conference (ISWC)-Demo Track
International Semantic Web Conference (ISWC)-Demo Track, Nov 2020, Conférence online, Greece
HAL
International Semantic Web Conference (ISWC)-Demo Track, Nov 2020, Conférence online, Greece
HAL
International audience; We demonstrate GOOSE, an open-source framework for secure graph outsourcing and SPARQL evaluation. We showcase the workflow of GOOSE over various real-world use cases, the scalability of GOOSE, and the security properties that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::165c6002b26cfd2909ec9bd237297c30
https://inria.hal.science/hal-02942717
https://inria.hal.science/hal-02942717
Publikováno v:
TrustCom
19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2020)
19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2020), Dec 2020, Conférence online, China. pp.202-209
HAL
19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2020)
19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2020), Dec 2020, Conférence online, China. pp.202-209
HAL
International audience; We consider the problem of cumulative reward maximization in multi-armed bandits. We address the security concerns that occur when data and computations are outsourced to an honest-but-curious cloud i.e., that executes tasks d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::758c9736443616fbcf37bc337f218860
https://hal.inria.fr/hal-02953292
https://hal.inria.fr/hal-02953292
Publikováno v:
ISPEC 2019 : The 15th International Conference on Information Security Practice and Experience
ISPEC 2019 : The 15th International Conference on Information Security Practice and Experience, Nov 2019, Kuala Lumpur, Malaysia. ⟨10.1007/978-3-030-34339-2_9⟩
Information Security Practice and Experience ISBN: 9783030343385
ISPEC
ISPEC 2019 : The 15th International Conference on Information Security Practice and Experience, Nov 2019, Kuala Lumpur, Malaysia. ⟨10.1007/978-3-030-34339-2_9⟩
Information Security Practice and Experience ISBN: 9783030343385
ISPEC
International audience; The stochastic multi-armed bandit is a classical decision making model, where an agent repeatedly chooses an action (pull a bandit arm) and the environment responds with a stochastic outcome (reward) coming from an unknown dis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2bc8ef4270a95956502067eff85a73ba
https://hal.science/hal-02270418
https://hal.science/hal-02270418
Publikováno v:
SECRYPT/ICETE-Revised Selected Papers
SECRYPT/ICETE-Revised Selected Papers, Jul 2019, Prague, Czech Republic. ⟨10.1007/978-3-030-52686-3_6⟩
E-Business and Telecommunications ISBN: 9783030526856
ICETE (Selected Papers)
SECRYPT/ICETE-Revised Selected Papers, Jul 2019, Prague, Czech Republic. ⟨10.1007/978-3-030-52686-3_6⟩
E-Business and Telecommunications ISBN: 9783030526856
ICETE (Selected Papers)
MapReduce is one of the most popular distributed programming paradigms that allows processing big data sets in parallel on a cluster. MapReduce users often outsource data and computations to a public cloud, which yields inherent security concerns. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::922aa57bcd302c1e902f2c285dbc2f8b
https://hal.inria.fr/hal-02942677
https://hal.inria.fr/hal-02942677
Publikováno v:
15th International Conference on Information Security and Cryptography, SECRYPT'18
15th International Conference on Information Security and Cryptography, SECRYPT'18, Jul 2018, Porto, Portugal. pp.514--521
HAL
ICETE (2)
15th International Conference on Information Security and Cryptography, SECRYPT'18, Jul 2018, Porto, Portugal. pp.514--521
HAL
ICETE (2)
International audience; MapReduce programming paradigm allows to process big data sets in parallel on a large cluster. We focus on a scenario where the data owner outsources her data on an honest-but-curious server. Our aim is to evaluate grouping an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e2d7e9e0b8ba4b9caf1a9a0ceeacb30
https://hal.archives-ouvertes.fr/hal-01874859/file/CGLY18.pdf
https://hal.archives-ouvertes.fr/hal-01874859/file/CGLY18.pdf