Zobrazeno 1 - 10
of 240
pro vyhledávání: '"Radjavi, Heydar"'
Autor:
Mastnak, Mitja, Radjavi, Heydar
We consider the following question: Let $\mathcal{A}$ be an abelian self-adjoint algebra of bounded operators on a Hilbert space $\mathcal{H}$. Assume that $\mathcal{A}$ is invariant under conjugation by a unitary operator $U$, i.e., $U^* AU$ is in $
Externí odkaz:
http://arxiv.org/abs/2405.11075
Let $\mathcal{H}$ be a complex, separable Hilbert space, and set $\mathfrak{c}($NIL$_2)=\{ MN - NM : N, M \in \mathcal{B}(\mathcal{H}), M^2 = 0 = N^2 \}$. When $\dim\, \mathcal{H}$ is finite, we characterise the set $\mathfrak{c}($NIL$_2)$ and its no
Externí odkaz:
http://arxiv.org/abs/2402.15676
Autor:
Mastnak, Mitja, Radjavi, Heydar
We prove that for any fixed unitary matrix $U$, any abelian self-adjoint algebra of matrices that is invariant under conjugation by $U$ can be embedded into a maximal abelian self-adjoint algebra that is still invariant under conjugation by $U$. We u
Externí odkaz:
http://arxiv.org/abs/2401.17863
We introduce the notions of $\varepsilon$-approximate fixed point and weak $\varepsilon$-approximate fixed point. We show that for a group of unitary matrices even the existence of a nontrivial weak $\varepsilon$-approximate fixed point for sufficien
Externí odkaz:
http://arxiv.org/abs/2310.07466
In his monograph on Infinite Abelian Groups, I. Kaplansky raised three ``test problems" concerning their structure and multiplicity. As noted by Azoff, these problems make sense for any category admitting a direct sum operation. Here, we are interest
Externí odkaz:
http://arxiv.org/abs/2306.11202
The maximal dimension of commutative subspaces of $M_n(\mathbb{C})$ is known. So is the structure of such a subspace when the maximal dimension is achieved. We consider extensions of these results and ask the following natural questions: If $V$ is a
Externí odkaz:
http://arxiv.org/abs/2209.08074
We describe the norm-closures of the set $\mathfrak{C}_{\mathfrak{E}}$ of commutators of idempotent operators and the set $\mathfrak{E} - \mathfrak{E}$ of differences of idempotent operators acting on a finite-dimensional complex Hilbert space, as we
Externí odkaz:
http://arxiv.org/abs/2205.09043
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.