Zobrazeno 1 - 10
of 604
pro vyhledávání: '"Radical of a ring"'
Autor:
Barry J. Gardner, E. P. Cojuhari
Publikováno v:
Communications in Algebra. 49:73-84
A corner of a ring A is a subring eAe, where e is an idempotent. Radical and semi-simple classes which are hereditary for corners and cases where the radical of a ring contains all radical corners are studied.
Autor:
Siegfried Bosch
Publikováno v:
Universitext ISBN: 9781447175223
Universitext ISBN: 9781447148289
Universitext ISBN: 9781447148289
A ring is called Noetherian if all its ideals are finitely generated or, equivalently, if its ideals satisfy the ascending chain condition. The aim of the chapter is to show that the Noetherian hypothesis, as simple as it might look, nevertheless has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02ab46619ef0977144c506d04b38d06d
https://doi.org/10.1007/978-1-4471-7523-0_2
https://doi.org/10.1007/978-1-4471-7523-0_2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Emil Ilić-Georgijević
Publikováno v:
Volume: 28, Issue: 28 193-205
International Electronic Journal of Algebra
International Electronic Journal of Algebra
In this paper, graded rings are $S$-graded rings inducing $S,$ that is, rings whose additive groups can be written as a direct sum of a family of their additive subgroups indexed by a nonempty set $S,$ and such that the product of two homogeneous ele
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eab8e3545b6a5b6f4773b0ea987b5d01
https://dergipark.org.tr/tr/pub/ieja/issue/55997/768259
https://dergipark.org.tr/tr/pub/ieja/issue/55997/768259
Autor:
Jae Eui Kim, Yang Lee, Sung Ju Ryu, Ji Young Lee, Dong Hyeon Chae, Jin Hwan Noh, Jeong Min Choi, Tae Hyeong Kim, Dong Hyun Kim, You Sun Lee, Kim Jae-Min
Publikováno v:
Korean Journal of Mathematics. 24:737-750
In this note we describe some classes of rings in relation to Abelian property of factorizations by nilradicals and Jacobson radical. The ring theoretical structures are investigated for various sorts of such factor rings which occur in the process.
Autor:
Abigail C. Bailey, John A. Beachy
Publikováno v:
Communications in Algebra. 45:2662-2672
We extend the definition of a piecewise Noetherian ring to the noncommutative case, and investigate various properties of such rings. In particular, we show that a ring with Krull dimension is piecewise Noetherian. Certain fully bounded piecewise Noe
Autor:
Kamal Paykan
Publikováno v:
Bollettino dell'Unione Matematica Italiana. 10:607-616
A ring is quasi-Baer (respectively, right p.q.-Baer) in case the right annihilator of every (respectively, principal right) ideal is generated by an idempotent, as a right ideal. A ring R is right AIP if the right annihilator of any right ideal of R
Autor:
Christine M. Leroux, John A. Beachy
Publikováno v:
Communications in Algebra. 44:3301-3307
It is shown that prime ideals of a Noetherian ring are linked if and only if certain corresponding prime ideals are linked in an associated Artinian ring. Furthermore, it is shown that there is a canonical linking ideal, which can be found by using a
Publikováno v:
Journal of the Korean Mathematical Society. 53:415-431
This note is concerned with examining nilradicals and Jacob-son radicals of polynomial rings when related factor rings are Armendariz.Especially we elaborate upon a well-known structural property of Armen-dariz rings, bringing into focus the Armendar
Autor:
Daniel A. Marcus
Publikováno v:
Number Fields ISBN: 9783319902326
Number Fields ISBN: 9780387902791
Number Fields ISBN: 9780387902791
We are going to exploit the geometric methods of chapter 5 to establish results about the distribution of the ideals of a number ring R. In a sense to be made precise shortly, we will show that the ideals are approximately equally distributed among t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::032d88ab2ad5c659b988c654aa493124
https://doi.org/10.1007/978-3-319-90233-3_6
https://doi.org/10.1007/978-3-319-90233-3_6