Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Radcliffe, P J"'
Autor:
Yoon, Kyubaek, You, Hojun, Wu, Wei-Ying, Lim, Chae Young, Choi, Jongeun, Boss, Connor, Ramadan, Ahmed, Popovich Jr., John M., Cholewicki, Jacek, Reeves, N. Peter, Radcliffe, Clark J.
In system identification, estimating parameters of a model using limited observations results in poor identifiability. To cope with this issue, we propose a new method to simultaneously select and estimate sensitive parameters as key model parameters
Externí odkaz:
http://arxiv.org/abs/2104.11426
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kirsch, Rachel, Radcliffe, A. J.
Publikováno v:
Electronic Journal of Combinatorics, Volume 28, Issue 1 (2021), P1.26
Recently Cutler and Radcliffe proved that the graph on $n$ vertices with maximum degree at most $r$ having the most cliques is a disjoint union of $\lfloor n/(r+1)\rfloor$ cliques of size $r+1$ together with a clique on the remainder of the vertices.
Externí odkaz:
http://arxiv.org/abs/1912.09872
Autor:
Keough, Lauren, Radcliffe, A. J.
There has been interest recently in maximizing the number of independent sets in graphs. For example, the Kahn-Zhao theorem gives an upper bound on the number of independent sets in a $d$-regular graph. Similarly, it is a corollary of the Kruskal-Kat
Externí odkaz:
http://arxiv.org/abs/1903.08232
The classic extremal problem is that of computing the maximum number of edges in an $F$-free graph. In the case where $F=K_{r+1}$, the extremal number was determined by Tur\'an. Later results, known as supersaturation theorems, proved that in a graph
Externí odkaz:
http://arxiv.org/abs/1903.08059
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kirsch, R., Radcliffe, A. J.
Publikováno v:
Discrete Mathematics, Volume 343, Issue 6, June 2020, 111803
Zykov showed in 1949 that among graphs on $n$ vertices with clique number $\omega(G) \le \omega$, the Tur\'an graph $T_{\omega}(n)$ maximizes not only the number of edges but also the number of copies of $K_t$ for each size $t$. The problem of maximi
Externí odkaz:
http://arxiv.org/abs/1712.07769
Autor:
Keough, L., Radcliffe, A. J.
Many extremal problems for graphs have threshold graphs as their extremal examples. For instance the current authors proved that for fixed $k\ge 1$, among all graphs on $n$ vertices with $m$ edges, some threshold graph has the fewest matchings of siz
Externí odkaz:
http://arxiv.org/abs/1710.00083
Autor:
Kirsch, R., Radcliffe, A. J.
Publikováno v:
Electronic Journal of Combinatorics, Volume 26, Issue 2 (2019), P2.36
Extremal problems concerning the number of independent sets or complete subgraphs in a graph have been well studied in recent years. Cutler and Radcliffe proved that among graphs with $n$ vertices and maximum degree at most $r$, where $n = a(r+1)+b$
Externí odkaz:
http://arxiv.org/abs/1709.06163
Autor:
Cutler, Jonathan, Radcliffe, A. J.
Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due, in various parts, to Kahn, Galvin-Tetali, and Zhao) that the independence polynomial of a $d$-regular graph is maximized by disjoint copies of $K_{d,d}$. Their
Externí odkaz:
http://arxiv.org/abs/1610.05714