Zobrazeno 1 - 10
of 229
pro vyhledávání: '"Rad Nader Jafari"'
Autor:
Azvin Farzaneh, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 4, Pp 1129-1137 (2022)
For a graph G, a Roman {3}-dominating function is a function f : V → {0, 1, 2, 3} having the property that for every vertex u ∈ V, if f(u) ∈ {0, 1}, then f(N[u]) ≥ 3. The weight of a Roman {3}-dominating function is the sum w(f) = f(V) = Σv
Externí odkaz:
https://doaj.org/article/9c68c6dc40a544c486872a6437689965
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 3, Pp 861-891 (2022)
In this paper, we survey results on the Roman domatic number and its variants in both graphs and digraphs. This fifth survey completes our works on Roman domination and its variations published in two book chapters and two other surveys.
Externí odkaz:
https://doaj.org/article/a5a7a53503c44dbcaf2dfa2cb517bd14
Autor:
Poureidi Abolfazl, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 3, Pp 709-726 (2022)
A 2-rainbow dominating function (2RDF) of a graph G is a function g from the vertex set V (G) to the family of all subsets of {1, 2} such that for each vertex v with g(v) =∅ we have ∪u∈N(v) g(u) = {1, 2}. The minimum of g(V (G)) = Σv∈V (G) |
Externí odkaz:
https://doaj.org/article/e3040e5778064b5f9ee3da431396b09e
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 2, Pp 613-626 (2022)
A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, γ(G), of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on th
Externí odkaz:
https://doaj.org/article/219eb4d1d16441a7beb82e20e13ec770
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 2, Pp 647-664 (2021)
For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V\S. The k-fair total domination number of G, denoted by ftdk(G), is the minimum cardinality of a
Externí odkaz:
https://doaj.org/article/74835ccff6b14fcfa53f53eaee3429b2
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 40, Iss 4, Pp 1085-1093 (2020)
For k ≥ 1, a k-fair dominating set (or just kFD-set), in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V − S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fai
Externí odkaz:
https://doaj.org/article/7d38b2b6a6f8498394315dee28fc635b
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 2, Pp 489-503 (2019)
For k ≥ 1, a k-fair dominating set (or just kFD-set) in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V \ S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair d
Externí odkaz:
https://doaj.org/article/d69fe12a56924b7a8fb851d900cb9fd6
Autor:
Rad Nader Jafari, Rahbani Hadi
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 1, Pp 41-53 (2019)
For a graph G = (V,E), a double Roman dominating function (or just DRDF) is a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0 for a vertex v, then v has at least two neighbors assigned 2 under f or one neighbor assigned 3 under f
Externí odkaz:
https://doaj.org/article/e5211d65435a4141beb78c0320f6c0a1
Autor:
Rad Nader Jafari, Rahbani Hadi
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 38, Iss 2, Pp 455-462 (2018)
A subset S of vertices in a graph G = (V,E) is a dominating set of G if every vertex in V − S has a neighbor in S, and is a total dominating set if every vertex in V has a neighbor in S. A dominating set S is a locating-dominating set of G if every
Externí odkaz:
https://doaj.org/article/8c300dd28e874069bf21b5cebd37bfad
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 4, Pp 859-871 (2017)
A Roman dominating function (or just RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the va
Externí odkaz:
https://doaj.org/article/0a02c85f202f4e8cbd9b31d297704003