Zobrazeno 1 - 10
of 321
pro vyhledávání: '"RICHMAN, DAVID P."'
An approximate divisor order is a partial order on the positive integers $\mathbb{N}^+$ that refines the divisor order and is refined by the additive total order. A previous paper studied such a partial order on $\mathbb{N}^+$, produced using the flo
Externí odkaz:
http://arxiv.org/abs/2403.04342
Autor:
Richman, David Harry
For a real number $x$, call $\frac1n \lfloor nx \rfloor$ the $n$-th lower rational approximation of $x$. We study the functions defined by taking the cumulative average of the first $n$ lower rational approximations of $x$, which we call the Farey st
Externí odkaz:
http://arxiv.org/abs/2303.02935
A positive integer $d$ is a floor quotient of $n$ if there is a positive integer $k$ such that $d = \lfloor n/k \rfloor$. The floor quotient relation defines a partial order on the positive integers. This paper studies the internal structure of this
Externí odkaz:
http://arxiv.org/abs/2212.11689
Autor:
Richman, David Harry
In analogy with the Manin-Mumford conjecture for algebraic curves, one may ask how a metric graph under the Abel-Jacobi embedding intersects torsion points of its Jacobian. We show that the number of torsion points is finite for metric graphs of genu
Externí odkaz:
http://arxiv.org/abs/2112.00168
Autor:
O'Desky, Andrew, Richman, David Harry
Publikováno v:
Trans. Amer. Math. Soc. 376 (2023), 1065-1087
We introduce a $p$-adic analogue of the incomplete gamma function. We also introduce quantities ($m$-values) associated to a function on natural numbers and prove a new characterization of $p$-adic continuity for functions with $p$-integral $m$-value
Externí odkaz:
http://arxiv.org/abs/2012.04615
Autor:
Richman, David Ross
Publikováno v:
INTEGERS 19 (2019) A42
We determine properties of the set of values of $ [nx] - ([x]/1 + [2x]/2 + \cdots + [nx]/x) $ as $n$ and $x$ vary.
Comment: 13 pages, accepted for publication in INTEGERS
Comment: 13 pages, accepted for publication in INTEGERS
Externí odkaz:
http://arxiv.org/abs/1906.12032
Autor:
Richman, David Harry
We show that on a metric graph of genus $g$, a divisor of degree $n$ generically has $g(n-g+1)$ Weierstrass points. For a sequence of generic divisors on a metric graph whose degrees grow to infinity, we show that the associated Weierstrass points be
Externí odkaz:
http://arxiv.org/abs/1809.07920
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lisak, Robert P., Richman, David P.
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2020 Dec . 117(51), 32195-32196.
Externí odkaz:
https://www.jstor.org/stable/27005782
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.