Zobrazeno 1 - 10
of 537
pro vyhledávání: '"RHOADES, ROBERT"'
Autor:
Johnson, Richard J., Mandell, Brian F., Schlesinger, Naomi, Mount, David B., Botson, John K., Abdellatif, Abdul Ali, Rhoades, Robert, Singh, Jasvinder A.
Publikováno v:
In Kidney International October 2024 106(4):573-582
Publikováno v:
Phys. Rev. E 101, 042112 (2020)
We study a variation of the trapping reaction, A+B->A, in which both the traps (A) and the particles (B) undergo diffusion, and the traps upon meeting react according to A+A->0 or A. This two-species reaction-diffusion system is known to exhibit a no
Externí odkaz:
http://arxiv.org/abs/1910.01386
We study combinatorial and asymptotic properties of the rank of strongly unimodal sequences. We find a generating function for the rank enumeration function, and give a new combinatorial interpretation of the ospt-function introduced by Andrews, Chan
Externí odkaz:
http://arxiv.org/abs/1806.03217
Publikováno v:
Acta Arithmetica 185 (2018), No. 1, 39--79
We study the vector space V_k^m(\lambda) of shifted polyharmonic Maass forms of weight k \in 2Z, depth m \geq 0, and shift \lambda \in C. This space is composed of real-analytic modular forms of weight k for PSL(2,Z) with moderate growth at the cusp
Externí odkaz:
http://arxiv.org/abs/1708.01278
Every binary De~Bruijn sequence of order n satisfies a recursion 0=x_n+x_0+g(x_{n-1}, ..., x_1). Given a function f on (n-1) bits, let N(f; r) be the number of functions generating a De Bruijn sequence of order n which are obtained by changing r loca
Externí odkaz:
http://arxiv.org/abs/1705.07835
We establish the asymptotic behavior of the Andrews $G_k(q)$ function as $q\to 1.$
Externí odkaz:
http://arxiv.org/abs/1511.07855
Publikováno v:
Ramanujan Journal 41 (2016), 191--232
We discuss polyharmonic Maass forms of even integer weight on PSL(2, Z)\H, which are a generalization of classical Maass forms. We explain the role of real-analytic Eisenstein series E_k(z, s) and the differential operator $\partial/\partial s$ in th
Externí odkaz:
http://arxiv.org/abs/1508.02652
We prove the conjectured limiting normality for the number of crossings of a uniformly chosen set partition of [n] = {1,2,...,n}. The arguments use a novel stochastic representation and are also used to prove central limit theorems for the dimension
Externí odkaz:
http://arxiv.org/abs/1502.00938
Autor:
Rhoades, Robert C.
Thesis (Ph.D.)-- University of Wisconsin--Madison, 2008.
Includes bibliographical references (p. 138-148).
Includes bibliographical references (p. 138-148).
Sander Zwegers showed that Ramanujan's mock theta functions are $q$-hypergeometric series, whose $q$-expansion coefficients are half of the Fourier coefficients of a non-holomorphic modular form. George Andrews, Henri Cohen, Freeman Dyson, and Dean H
Externí odkaz:
http://arxiv.org/abs/1311.3044