Zobrazeno 1 - 9
of 9
pro vyhledávání: '"RF and KRR models"'
Autor:
A. Yousafzai, W. Manzoor, G. Raza, T. Mahmood, F. Rehman, R. Hadi, S. Shah, M. Amin, A. Akhtar, S. Bashir, U. Habiba, M. Hussain
Publikováno v:
Brazilian Journal of Biology, Vol 84 (2021)
Abstract This study aimed to develop and evaluate data driven models for prediction of forest yield under different climate change scenarios in the Gallies forest division of district Abbottabad, Pakistan. The Random Forest (RF) and Kernel Ridge Regr
Externí odkaz:
https://doaj.org/article/bd6d31f6a2054bd9af5026acda0bcc66
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wajiha Manzoor, A. Yousafzai, Majid Hussain, M. Amin, S. Bashir, G. Raza, Fariha Rehman, R. Hadi, S. Shah, Ume Habiba, Tahir Mahmood, Andleeb Akhtar
Publikováno v:
Brazilian Journal of Biology, Vol 84 (2021)
Brazilian Journal of Biology, Volume: 84, Article number: e253106, Published: 29 OCT 2021
Brazilian Journal of Biology v.84 2024
Brazilian Journal of Biology
Instituto Internacional de Ecologia (IIE)
instacron:IIE
Brazilian Journal of Biology, Volume: 84, Article number: e253106, Published: 29 OCT 2021
Brazilian Journal of Biology v.84 2024
Brazilian Journal of Biology
Instituto Internacional de Ecologia (IIE)
instacron:IIE
This study aimed to develop and evaluate data driven models for prediction of forest yield under different climate change scenarios in the Gallies forest division of district Abbottabad, Pakistan. The Random Forest (RF) and Kernel Ridge Regression (K
Autor:
Fite, Shachar1 (AUTHOR), Wahab, Alexandra2 (AUTHOR), Paenurk, Eno2 (AUTHOR), Gross, Zeev1 (AUTHOR), Gershoni‐Poranne, Renana1 (AUTHOR) rporanne@technion.ac.il
Publikováno v:
Journal of Physical Organic Chemistry. Jan2023, Vol. 36 Issue 1, p1-17. 17p.
Autor:
Ali, Mumtaz1 (AUTHOR), Deo, Ravinesh C.2 (AUTHOR) ravinesh.deo@usq.edu.au, Xiang, Yong1 (AUTHOR), Li, Ya3 (AUTHOR), Yaseen, Zaher Mundher4 (AUTHOR)
Publikováno v:
Hydrological Sciences Journal/Journal des Sciences Hydrologiques. Dec2020, Vol. 65 Issue 16, p2693-2708. 16p.
Autor:
Hai Tao, Sinan Q. Salih, Mandeep Kaur Saggi, Esmaeel Dodangeh, Cyril Voyant, Nadhir Al-Ansari, Zaher Mundher Yaseen, Shamsuddin Shahid
Publikováno v:
IEEE Access, Vol 8, Pp 83347-83358 (2020)
Accurate wind speed (WS) modelling is crucial for optimal utilization of wind energy. Numerical Weather Prediction (NWP) techniques, generally used for WS modelling are not only less cost-effective but also poor in predicting in shorter time horizon.
Externí odkaz:
https://doaj.org/article/ebf283eb88d844fd8b174081ce174422
Publikováno v:
Scientific Reports. 8/31/2020, Vol. 10 Issue 1, pN.PAG-N.PAG. 1p.
Publikováno v:
IEEE Access.
Accurate wind speed (WS) modelling is crucial for optimal utilization of wind energy. Numerical Weather Prediction (NWP) techniques, generally used for WS modelling are not only less cost-effective but also poor in predicting in shorter time horizon.