Zobrazeno 1 - 10
of 41
pro vyhledávání: '"RESEAUX DE NEURONES"'
Autor:
Rémy Leroy, Bertrand Le Saux, Marcela Pinheiro de Carvalho, Pauline Trouvé-Peloux, Frédéric Champagnat
Publikováno v:
RFIAP 2020
RFIAP 2020, Jun 2020, VANNES, France
HAL
RFIAP 2020, Jun 2020, VANNES, France
HAL
International audience; Estimer la géométrie 3D d’une scène est crucial pour la reconstruction et la compréhension de celle-ci. L’information 3D est obtenue traditionnellement par stéréovision, et plus récemment par apprentissage profond a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::53ac3842a42076c9c726f19c61729e7e
https://hal.archives-ouvertes.fr/hal-02906388/file/DTIS20137.1595258673.pdf
https://hal.archives-ouvertes.fr/hal-02906388/file/DTIS20137.1595258673.pdf
Autor:
Williams, David M. G.
The Born-Oppenheimer (BO) approximation is a cornerstone of the theoretical treatment of molecular processes. It separates nuclear and electronic motion, splitting up an immensely challenging many-body problem into two highly involved but well-unders
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::31738a6b59db5f67d0dc79b26f827c30
https://hal.science/tel-03917774
https://hal.science/tel-03917774
Autor:
Besedin, Andrey
Publikováno v:
Neural and Evolutionary Computing [cs.NE]. Conservatoire national des arts et metiers-CNAM, 2019. English. ⟨NNT : 2019CNAM1263⟩
In this thesis, we propose a new deep-learning-based approach for online classification on streams of high-dimensional data. In recent years, Neural Networks (NN) have become the primary building block of state-of-the-art methods in various machine l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::86c5731cb31e74f063adaedaec7bdb37
https://tel.archives-ouvertes.fr/tel-02484715
https://tel.archives-ouvertes.fr/tel-02484715
Autor:
Luvizon, Diogo
Publikováno v:
Computer Vision and Pattern Recognition [cs.CV]. Cergy Paris Université, 2019. English
3D human action recognition is a challenging task due to the complexity of human movementsand to the variety on poses and actions performed by distinct subjects. Recent technologies basedon depth sensors can provide 3D human skeletons with low comput
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::2211b7d905bd3e3e823fb4000883bf7b
https://tel.archives-ouvertes.fr/tel-02492463/document
https://tel.archives-ouvertes.fr/tel-02492463/document
Publikováno v:
Proceedings of the 52nd Hawaii International Conference on System Sciences
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019)
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019), Jan 2019, Wailea, HI, United States. pp.616-625
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019)
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019), Jan 2019, Wailea, HI, United States. pp.616-625
International audience; For over a decade, the multi-agent patrolling task has received a growing attention from the multi-agent community due to its wide range of potential applications. Various algorithms based on reactive and cognitive architectur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::519dc17437f6be1e05d76348e65c014e
https://hal.archives-ouvertes.fr/hal-01996004
https://hal.archives-ouvertes.fr/hal-01996004
Publikováno v:
HICSS
Proceedings of the 52nd Hawaii International Conference on System Sciences
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019)
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019), Jan 2019, Wailea, HI, United States. pp.616-625
Proceedings of the 52nd Hawaii International Conference on System Sciences
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019)
52nd Annual Hawaii International Conference on System Sciences (HICSS 2019), Jan 2019, Wailea, HI, United States. pp.616-625
International audience; For over a decade, the multi-agent patrolling task has received a growing attention from the multi-agent community due to its wide range of potential applications. Various algorithms based on reactive and cognitive architectur
Publikováno v:
30th International Conference on Tools with Artificial Intelligence (ICTAI)
30th International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2018, VOLOS, Greece
30th International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2018, VOLOS, Greece
International audience; We propose a conceptually simple new decentralised and non-communicating strategy for the multi-agent patrolling based on the LSTM architecture. The recurrent neural networks and more specifically the LSTM architecture, as mac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::be76f71173ca86252a6ccd852859f6ec
https://hal.archives-ouvertes.fr/hal-02020330/document
https://hal.archives-ouvertes.fr/hal-02020330/document
Publikováno v:
30th International Conference on Tools with Artificial Intelligence (ICTAI)
30th International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2018, VOLOS, Greece
ICTAI
30th International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2018, VOLOS, Greece
ICTAI
International audience; We propose a conceptually simple new decentralised and non-communicating strategy for the multi-agent patrolling based on the LSTM architecture. The recurrent neural networks and more specifically the LSTM architecture, as mac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a5b9a013e88541ecdde1474ba1c9456
https://hal.archives-ouvertes.fr/hal-02020330/document
https://hal.archives-ouvertes.fr/hal-02020330/document
Autor:
Pascanu, Razvan
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la mod
Externí odkaz:
http://hdl.handle.net/1866/11452