Zobrazeno 1 - 10
of 105
pro vyhledávání: '"RAND, ALEXANDER"'
Autor:
Gillette, Andrew, Rand, Alexander
Interpolation error estimates in terms of geometric quality measures are established for harmonic coordinates on polytopes in two and three dimensions. First we derive interpolation error estimates over convex polygons that depend on the geometric qu
Externí odkaz:
http://hdl.handle.net/10150/621355
http://arizona.openrepository.com/arizona/handle/10150/621355
http://arizona.openrepository.com/arizona/handle/10150/621355
Autor:
Reimann, Christopher E., Kim, Kelly E., Rand, Alexander W., Moghadam, Farbod A., Stoltz, Brian M.
Publikováno v:
In Tetrahedron 9 January 2023 130
Autor:
Gillette, Andrew, Rand, Alexander
Interpolation error estimates in terms of geometric quality measures are established for harmonic coordinates on polytopes in two and three dimensions. First we derive interpolation error estimates over convex polygons that depend on the geometric qu
Externí odkaz:
http://arxiv.org/abs/1504.00599
We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex poly
Externí odkaz:
http://arxiv.org/abs/1405.6978
Autor:
Gonzalez, Kevin J.1 (AUTHOR), Rand, Alexander W.1 (AUTHOR), Stoltz, Brian M.1 (AUTHOR) stoltz@caltech.edu
Publikováno v:
Angewandte Chemie. 3/27/2023, Vol. 135 Issue 14, p1-6. 6p.
Autor:
Rand, Alexander
Interpolation error estimates needed in common finite element applications using simplicial meshes typically impose restrictions on the both the smoothness of the interpolated functions and the shape of the simplices. While the simplest theory can be
Externí odkaz:
http://arxiv.org/abs/1112.4100
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, doi:10.1007/s10444-011-9218-z], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for
Externí odkaz:
http://arxiv.org/abs/1111.5588
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon satisfying simple geometric criteria, our construction produces 2n basis function
Externí odkaz:
http://arxiv.org/abs/1109.3259
Autor:
Rand, Alexander
Improving the best known examples, two planar straight-line graphs which cause the non-termination of Ruppert's algorithm for a minimum angle threshold as low as 29.06 degrees are given.
Externí odkaz:
http://arxiv.org/abs/1103.3903
Autor:
Rand, Alexander
A planar straight-line graph which causes the non-termination Ruppert's algorithm for a minimum angle threshold larger than about 29.5 degrees is given. The minimum input angle of this example is about 74.5 degrees meaning that failure is not due to
Externí odkaz:
http://arxiv.org/abs/1101.1071