Zobrazeno 1 - 8
of 8
pro vyhledávání: '"RAIEVSKA, MARYNA"'
Autor:
Raievska, Iryna, Raievska, Maryna
We consider groups of the nilpotency class $3$ of order $p^4$ which are the additive groups of local nearrings. It was shown that, for $p>3$, there exist a local nearring on one of such 4 groups.
Comment: arXiv admin note: substantial text overl
Comment: arXiv admin note: substantial text overl
Externí odkaz:
http://arxiv.org/abs/2309.14342
Publikováno v:
Algebra Discrete Math. 36 (2023). No. 2, 217-224
It is proved that the additive group of every semidistributive nearring $R$ with an identity is abelian and if R has no elements of order $2$, then the nearring $R$ actually is an associative ring.
Externí odkaz:
http://arxiv.org/abs/2211.00456
Autor:
Raievska, Iryna, Raievska, Maryna
Publikováno v:
Math. Commun. 29 (2024) 177-191
Lower bounds for the number of local nearrings on groups of order $p^3$ are obtained. On each non-metacyclic non-abelian or metacyclic abelian groups of order $p^3$ there exist at least $p+1$ non-isomorphic local nearrings
Externí odkaz:
http://arxiv.org/abs/2205.08359
Autor:
RAIEVSKA, IRYNA1,2 raeirina@imath.kiev.ua, RAIEVSKA, MARYNA1,2 raemarina@imath.kiev.ua
Publikováno v:
Mathematical Communications. 2024, Vol. 29 Issue 2, p177-191. 15p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Carpathian Math. Publ. 12, no.1 (2020) 199-207
Finite non-abelian non-metacyclic $2$-generated $p$-groups (${p>2}$) of nilpotency class $2$ with cyclic commutator subgroup which are the additive groups of local nearrings are described. It is shown that the subgroup of all non-invertible elements
Externí odkaz:
http://arxiv.org/abs/1906.02949
Autor:
Raievska, Iryna, Raievska, Maryna
Publikováno v:
Ukrainian Mathematical Journal; Oct2024, Vol. 76 Issue 6, p1005-1024, 20p
It is proved that the additive group of every semidistributive nearring $R$ with an identity is abelian and if R has no elements of order $2$, then the nearring $R$ actually is an associative ring.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::650704c458569745694e49a9d4c409e9
http://arxiv.org/abs/2211.00456
http://arxiv.org/abs/2211.00456