Zobrazeno 1 - 10
of 229
pro vyhledávání: '"RAD, NADER JAFARI"'
Autor:
Sepehr, Marzie1 arzie.sephr68@shahed.ac.ir, Rad, Nader Jafari1 n.jafarirad@shahed.ac.ir
Publikováno v:
Communications in Combinatorics & Optimization. 2024, Vol. 9 Issue 4, p693-705. 13p.
Autor:
Asemian, Ghazale1 ghasemian@gmail.com, Rad, Nader Jafari2 n.jafarirad@gmail.com, Tehranian, Abolfazl1 tehranian@srbiau.ac.ir, Rasouli, Hamid1 hrasouli@srbiau.ac.ir
Publikováno v:
Communications in Combinatorics & Optimization. Mar2025, Vol. 10 Issue 1, p181-193. 13p.
Autor:
Mirhoseini, Seyed Hosein1 seyedhosein.mirhoseini@shahed.ac.ir, Rad, Nader Jafari1 n.jafarirad@shahed.ac.ir
Publikováno v:
Communications in Combinatorics & Optimization. 2024, Vol. 9 Issue 3, p595-605. 11p.
Autor:
Mohammadi, Elham1 elhammohammadi495@gmail.com, Rad, Nader Jafari1 n.jafarirad@gmail.com
Publikováno v:
Computer Science Journal of Moldova. 2024, Vol. 32 Issue 1, p38-45. 8p.
Autor:
Aziz, Noor A'lawiah Abd1 nooralawiah@usm.my, Rad, Nader Jafari2 n.jafarirad@gmail.com, Kamarulhaili, Hailiza1 hailiza@usm.my, Hasni, Roslan3 hroslan@umt.edu.my
Publikováno v:
Communications in Combinatorics & Optimization. 2024, Vol. 9 Issue 1, p37-49. 13p.
Autor:
Azvin Farzaneh, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 4, Pp 1129-1137 (2022)
For a graph G, a Roman {3}-dominating function is a function f : V → {0, 1, 2, 3} having the property that for every vertex u ∈ V, if f(u) ∈ {0, 1}, then f(N[u]) ≥ 3. The weight of a Roman {3}-dominating function is the sum w(f) = f(V) = Σv
Externí odkaz:
https://doaj.org/article/9c68c6dc40a544c486872a6437689965
A subset $D$ of vertices of a graph $G$ is a \textit{dominating set} if for each $u\in V(G)\setminus D$, $u$ is adjacent to some vertex $v\in D$. The \textit{dominating number}, $\gamma(G)$ of $G$, is the minimum cardinality of a dominating set of $G
Externí odkaz:
http://arxiv.org/abs/1804.02532
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 3, Pp 861-891 (2022)
In this paper, we survey results on the Roman domatic number and its variants in both graphs and digraphs. This fifth survey completes our works on Roman domination and its variations published in two book chapters and two other surveys.
Externí odkaz:
https://doaj.org/article/a5a7a53503c44dbcaf2dfa2cb517bd14
Autor:
Poureidi Abolfazl, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 3, Pp 709-726 (2022)
A 2-rainbow dominating function (2RDF) of a graph G is a function g from the vertex set V (G) to the family of all subsets of {1, 2} such that for each vertex v with g(v) =∅ we have ∪u∈N(v) g(u) = {1, 2}. The minimum of g(V (G)) = Σv∈V (G) |
Externí odkaz:
https://doaj.org/article/e3040e5778064b5f9ee3da431396b09e
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 2, Pp 613-626 (2022)
A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, γ(G), of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on th
Externí odkaz:
https://doaj.org/article/219eb4d1d16441a7beb82e20e13ec770