Zobrazeno 1 - 10
of 343
pro vyhledávání: '"RAŞA, IOAN"'
In this paper we present commutativity results for a general class of Szasz-Mirakjan-Durrmeyer type operators and associated differential operators and investigate their eigenfunctions.
Externí odkaz:
http://arxiv.org/abs/2407.21722
In this paper we introduce a general family of Sz\'asz--Mirakjan--Durrmeyer type operators depending on an integer parameter $j \in \mathbb{Z}$. They can be viewed as a generalization of the Sz\'asz--Mirakjan--Durrmeyer operators [9], Phillips operat
Externí odkaz:
http://arxiv.org/abs/2407.16474
Autor:
Acu, Ana-Maria, Rasa, Ioan
We prove a version of a conjecture concerning the asymptotic behavior of the Aldaz-Kounchev-Render operators on the hypercube.
Externí odkaz:
http://arxiv.org/abs/2301.01280
The idea behind Poisson approximation to the binomial distribution was used in [J. de la Cal, F. Luquin, J. Approx. Theory, 68(3), 1992, 322-329] and subsequent papers in order to establish the convergence of suitable sequences of positive linear ope
Externí odkaz:
http://arxiv.org/abs/2208.08326
Publikováno v:
Annales Mathematicae Silesianae, Vol 38, Iss 1, Pp 57-63 (2024)
We consider sequences of Steklov type operators and an associated functional equation. For a suitable sequence, we establish asymptotic formulas.
Externí odkaz:
https://doaj.org/article/5e82633e8a0945b8830dc3c8a84a3d53
The approximation properties of the Aldaz-Kounchev-Render (AKR) operators are discussed and classes of functions for which these operators approximate better than the classical Bernstein operators are described. The new results are then extended to t
Externí odkaz:
http://arxiv.org/abs/2204.10506
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 May 2024 533(2)
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2022 Oct 01. 16(2), 495-507.
Externí odkaz:
https://www.jstor.org/stable/27174770
Autor:
Acu, Ana Maria, Rasa, Ioan
We consider some hypergeometric functions and prove that they are elementary functions. Consequently, the second order moments of Meyer-Konig and Zeller type operators are elementary functions. The higher order moments of these operators are expresse
Externí odkaz:
http://arxiv.org/abs/1911.10319
We consider a probability distribution depending on a real parameter $x$. As functions of $x$, the R\'enyi entropy and the Tsallis entropy can be expressed in terms of the associated index of coincidence $S(x)$. We establish recurrence relations and
Externí odkaz:
http://arxiv.org/abs/1910.13491