Zobrazeno 1 - 9
of 9
pro vyhledávání: '"R. Praveena Priyadarsini"'
Publikováno v:
ICTACT Journal on Soft Computing, Vol 1, Iss 4, Pp 201-205 (2011)
Privacy-preservation is a step in data mining that tries to safeguard sensitive information from unsanctioned disclosure and hence protecting individual data records and their privacy. There are various privacy preservation techniques like k-anonymit
Externí odkaz:
https://doaj.org/article/1f10cf0bd19a46b2bce2aedd1f84a659
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 2, Iss 1 (2009)
This paper intends to classify the Ljubljana Breast Cancer dataset using C4.5 Decision Tree and Nai?ve Bayes classifiers. In this work, classification is carriedout using two methods. In the first method, dataset is analysed using all the attributes
Externí odkaz:
https://doaj.org/article/f66618e4f5dd4de9a37d8d189bbf4319
Publikováno v:
Sadhana. 40:1769-1792
Enormous amount of e-data is collected world-wide by organizations for the purpose of their research and decision making. The availability of this heterogeneous, sensitive information in e-databases poses a threat to the privacy of the individual or
Publikováno v:
CODS
In the digital era vast amount of data are collected and shared for purpose of research and analysis. These data contain sensitive information about the people and organizations which needs to be protected during the process of data mining. This work
Publikováno v:
ICTACT Journal on Soft Computing, Vol 1, Iss 4, Pp 201-205 (2011)
Privacy-preservation is a step in data mining that tries to safeguard sensitive information from unsanctioned disclosure and hence protecting individual data records and their privacy. There are various privacy preservation techniques like k-anonymit
Publikováno v:
Indian Journal of Science and Technology. 8
Attributes in macro-data have to be segregating based on their sensitivity for privacy preservation purposes. Automating this attribute segregation becomes complicated in high dimensional datasets and data streams. In this work, information or correl
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 2, Iss 1, Pp 60-68 (2009)
International Journal of Computational Intelligence Systems, Vol 2, Iss 1 (2009)
International Journal of Computational Intelligence Systems, Vol 2, Iss 1 (2009)
This paper intends to classify the Ljubljana Breast Cancer dataset using C4.5 Decision Tree and Nai?ve Bayes classifiers. In this work, classification is carriedout using two methods. In the first method, dataset is analysed using all the attributes
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.