Zobrazeno 1 - 10
of 14
pro vyhledávání: '"R. Omar Chavez-Garcia"'
Publikováno v:
IEEE Robotics and Automation Letters. 5:2586-2593
We introduce a novel approach to long-range path planning that relies on a learned model to predict the outcome of local motions using possibly partial knowledge. The model is trained from a dataset of trajectories acquired in a self-supervised way.
Autor:
Luca Diviani, Emian Furger, R. Omar Chavez-Garcia, Samuele Kronauer, Marco Scarfo, Christian Brianza, Alessandro Giusti
Hot-rolling is a metal forming process that produces a workpiece with a desired target cross-section from an input workpiece through a sequence of plastic deformations; each deformation is generated by a stand composed of opposing rolls with a specif
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e68c693e526b0abfaa645b5df75df4b
Publikováno v:
ICRA
We consider the problem of planning paths on graphs with some edges whose traversability is uncertain; for each uncertain edge, we are given a probability of being traversable (e.g., by a learned classifier). We categorize different interpretations o
Publikováno v:
AAAI
We demonstrate a self-supervised approach which learns to detect long-range obstacles from video: it automatically obtains training labels by associating the camera frames acquired at a given pose to short-range sensor readings acquired at a differen
Mobile ground robots operating on unstructured terrain must predict which areas of the environment they are able to pass in order to plan feasible paths. We address traversability estimation as a heightmap classification problem: we build a convoluti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94631398eb9ff3eb8c549ffe76a156d1
http://arxiv.org/abs/1709.05368
http://arxiv.org/abs/1709.05368
Publikováno v:
Advanced Concepts for Intelligent Vision Systems ISBN: 9783319703527
ACIVS
ACIVS
Mobile ground robots operating on uneven terrain must predict which areas of the environment they are able to pass in order to plan feasible paths. We cast traversability estimation as an image classification problem: we build a convolutional neural
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e0fb185d7a31dbb27316ec2b553b5105
https://doi.org/10.1007/978-3-319-70353-4_28
https://doi.org/10.1007/978-3-319-70353-4_28
Publikováno v:
The 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016)
The 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Oct 2016, Daejeon, South Korea
IROS
The 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Oct 2016, Daejeon, South Korea
IROS
International audience; Considering perception as an observation process only is the very reason for which robotic perception methods are to date unable to provide a general capacity of scene understanding. Related work in neuroscience has shown that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ea7df06f53997ebcf4d5158b44991cf6
https://hal.archives-ouvertes.fr/hal-01392823/file/finaliros2016.pdf
https://hal.archives-ouvertes.fr/hal-01392823/file/finaliros2016.pdf
Publikováno v:
The 2016 International Symposium on Experimental Robotics (ISER 2016)
The 2016 International Symposium on Experimental Robotics (ISER 2016), Oct 2016, Tokyo, Japan
International Symposium on Experimental Robotics (ISER 2016)
International Symposium on Experimental Robotics (ISER 2016), Oct 2016, Tokyo, Japan
Springer Proceedings in Advanced Robotics ISBN: 9783319501147
ISER
The 2016 International Symposium on Experimental Robotics (ISER 2016), Oct 2016, Tokyo, Japan
International Symposium on Experimental Robotics (ISER 2016)
International Symposium on Experimental Robotics (ISER 2016), Oct 2016, Tokyo, Japan
Springer Proceedings in Advanced Robotics ISBN: 9783319501147
ISER
International audience; Reasoning jointly on perception and action requires to interpret the scene in terms of the agent's own potential capabilities. We propose a Bayesian architecture for learning sensorimotor representations from the interaction b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50fae01ac6dc5db267495860d0f5c9f9
https://hal.archives-ouvertes.fr/hal-01392826/file/finaliser2016.pdf
https://hal.archives-ouvertes.fr/hal-01392826/file/finaliser2016.pdf
Publikováno v:
Intelligent Vehicles Symposium (IV), 2014 IEEE
Intelligent Vehicles Symposium (IV), 2014 IEEE, Jun 2014, Dearborn, Michigan, United States. pp.8
Intelligent Vehicles Symposium
Intelligent Vehicles Symposium (IV), 2014 IEEE, Jun 2014, Dearborn, Michigan, United States. pp.8
Intelligent Vehicles Symposium
International audience; Intelligent vehicle perception involves the correct detection and tracking of moving objects. Taking into account all the possible information at early levels of the perception task can improve the final model of the environme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abaa9a87b3ccfdd1ecbc9863c091499f
https://hal.science/hal-01010374/document
https://hal.science/hal-01010374/document
Publikováno v:
Intelligent Vehicles Symposium
2012 IEEE Intelligent Vehicles Symposium (IV)
2012 Intelligent Vehicles Symposium
2012 Intelligent Vehicles Symposium, Jun 2012, Alcalá de Henares, Spain. pp.159-164, ⟨10.1109/IVS.2012.6232307⟩
2012 IEEE Intelligent Vehicles Symposium (IV)
2012 Intelligent Vehicles Symposium
2012 Intelligent Vehicles Symposium, Jun 2012, Alcalá de Henares, Spain. pp.159-164, ⟨10.1109/IVS.2012.6232307⟩
Poster; International audience; In this paper, we detail a complete software architecture of a key task that an intelligent vehicle has to deal with: frontal object perception. This task is solved by processing raw data of a radar and a mono-camera t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6f90e3681adb35dfd4924132f6f9bd5