Zobrazeno 1 - 10
of 28
pro vyhledávání: '"R. M. Asharabi"'
Autor:
R. M. Asharabi, Jürgen Prestin
Publikováno v:
Numerical Algorithms. 86:1421-1441
The bivariate sinc-Gauss sampling formula is introduced in Asharabi and Prestin (IMA J. Numer. Anal. 36:851–871, 2016) to approximate analytic functions of two variables which satisfy certain growth condition. In this paper, we apply this formula t
Autor:
Fatemah M. Al-Abbas, R. M. Asharabi
Publikováno v:
ETNA - Electronic Transactions on Numerical Analysis. 52:320-341
As it is known, the convergence rate of the multidimensional Whittaker-Kotelnikov-Shannon (WKS) sampling series is slow due to the slow decay of the sinc function. In this paper, we incorporate a convergence factor from the Bernstein space into the m
Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
Autor:
R. M. Asharabi, Jürgen Prestin
Publikováno v:
Communications on Pure & Applied Analysis. 19:4143-4158
The use of sampling methods in computing eigenpairs of two-parameter boundary value problems is extremely rare. As far as we know, there are only two studies up to now using the bivariate version of the classical and regularized sampling series. Thes
Autor:
Mahmoud H. Annaby, R. M. Asharabi
Publikováno v:
Trends in Mathematics ISBN: 9783030497156
We introduce a new numerical method based on the sinc-Gaussian operator for solving the inverse heat equation. We establish rigorous proofs of the error estimates for both truncation and aliasing errors. The effect of the amplitude error, which has n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::25c85e516ce431775ec68b567fe6c408
https://doi.org/10.1007/978-3-030-49716-3_1
https://doi.org/10.1007/978-3-030-49716-3_1
Publikováno v:
Trends in Mathematics ISBN: 9783030497156
In this chapter we give a survey for the use of sinc methods in computing eigenvalues of various types of boundary value problems. The techniques cover the classical sinc-method, regularized sinc-method, Hermite interpolations and the associated regu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::39476bf993c475d061fabb04e11d9f57
https://doi.org/10.1007/978-3-030-49716-3_10
https://doi.org/10.1007/978-3-030-49716-3_10
Autor:
R. M. Asharabi, Aisha M. Al-Hayzea
Publikováno v:
Applied Mathematics-A Journal of Chinese Universities. 33:209-224
This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay co
Autor:
R. M. Asharabi
Publikováno v:
Numerical Algorithms. 81:293-312
The sinc-Gaussian sampling formula is used to approximate an analytic function, which satisfies a growth condition, using only finite samples of the function. The error of the sinc-Gaussian sampling formula decreases exponentially with respect to N,
Autor:
Mahmoud H. Annaby, R. M. Asharabi
Publikováno v:
Japan Journal of Industrial and Applied Mathematics. 35:653-668
The sinc-Gaussian sampling operator has become an efficient tool in interpolating entire and analytic functions with appropriate growth properties. It accelerates the rate of convergence and remarkably enhance the slow rate of convergence of the clas
Autor:
R. M. Asharabi, Mohammed M. Tharwat
Publikováno v:
ETNA - Electronic Transactions on Numerical Analysis. 48:373-386
Autor:
R. M. Asharabi, Mahmoud H. Annaby
Publikováno v:
Integral Transforms and Special Functions. 28:732-750
We derive a biorthogonal Kramer analytic theorem, for integral transforms whose kernels generate biorthogonal bases in Hilbert spaces. The theorem is applied to various integral transforms associated with classes of fractional integro-differential ei